Authors:
Genowefa Kotwica Department of Animal Physiology, University of Agriculture and Technology, 10-718 Olsztyn-Kortowo, Poland

Search for other papers by Genowefa Kotwica in
Current site
Google Scholar
PubMed
Close
,
Anita Franczak Department of Animal Physiology, University of Agriculture and Technology, 10-718 Olsztyn-Kortowo, Poland

Search for other papers by Anita Franczak in
Current site
Google Scholar
PubMed
Close
,
S. Okrasa Department of Animal Physiology, University of Agriculture and Technology, 10-718 Olsztyn-Kortowo, Poland

Search for other papers by S. Okrasa in
Current site
Google Scholar
PubMed
Close
, and
J. Kotwica Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-718 Olsztyn-Kortowo, Poland

Search for other papers by J. Kotwica in
Current site
Google Scholar
PubMed
Close
Restricted access

The role of oxytocin (OT) in the regulation of prostaglandin F (PGF ) secretion during luteolysis in gilts was studied using a highly specific OT antagonist (CAP-581). In Experiment 1 gilts on Days 14 to 19 of the oestrous cycle in Latin square design were used, to determine the dose and time of application of OT and CAP. In Group I (n = 6) gilts were treated intravenously with saline or with 10, 20 and 30 IU of OT. Concentrations of the main PGF metabolite i.e. 13,14-dihydro-15-keto-prosta-glandin F (PGFM) were measured in blood samples as uterine response to the treatment. Twenty IU of OT was the most effective to stimulate PGFM release and this dose was used after CAP treatment in gilts of Groups II, III and IV. Gilts of Group II (n = 3) were injected into the uterine horns (UH) with saline (5 ml/horn) or CAP (2 mg, 3 mg and 4 mg; half dose/horn) and OT was injected (i.v.) 30 min thereafter. Any of the CAP doses given into the UH affected PGFM plasma concentrations stimulated by OT. In Group III (n = 4) gilts were infused (i.v.) for 30 min with CAP (9 mg, 14 mg and 18 mg/gilt) followed by 20 IU of OT. All doses of CAP effectively inhibited OT-stimulated PGF release, therefore 9 mg was selected for the further studies. Gilts of Group IV (n = 4) received OT 4, 6 and 8 h after CAP to define how long CAP blocks the OT receptors. Concentrations of PGFM increased after any of this period of time. Thus, we concluded that 9 mg of CAP infused every 4 h will effectively block OT receptors. In Experiment 2, gilts (n = 4) received CAP as a 30-min infusion every 4 h on Days 12-20 of the oestrous cycle. Control gilts (n = 3) were infused with saline. CAP infusions diminished the height of PGFM peaks (P < 0.05). Frequency of the PGFM (P < 0.057) and OT (P < 0.082) peaks only tended to be lower in the CAP-treated gilts. Peripheral plasma concentrations of progesterone (P4) and oestradiol-17β (E2) and the time of luteolysis initiation as measured by the decrease of P4 concentration were the same in CAP-and saline-treated gilts. The macroscopic studies of the ovaries in gilts revealed lack of differences between groups. We conclude that OT is involved in the secretion of luteolytic PGF peaks but its role is limited to controlling their height and frequency. Blocking of OT receptors did not prevent luteolysis in sows.

  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ferenc BASKA

Editorial assistant: Szilvia PÁLINKÁS

 

Editorial Board

  • Mária BENKŐ (Acta Veterinaria Hungarica, Budapest, Hungary)
  • Gábor BODÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Béla DÉNES (University of Veterinary Medicine, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (University of Veterinary Medicine, Budapest, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • János GÁL (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Dušan PALIĆ (Ludwig Maximilian University, Munich, Germany)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA

University of Veterinary Medicine,

H-1078 Budapest, István utca 2., Hungary

Phone: (36 20) 560 4183 (ed.-in-chief) or (36 1) 478 4100/8430 (editor)

E-mail: acta.veterinaria@univet.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.272
SJR Q rank Q2

2023  
Web of Science  
Journal Impact Factor 0.7
Rank by Impact Factor Q3 (Veterinary Sciences)
Journal Citation Indicator 0.4
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Veterinary)
SNIP 0.39
Scimago  
SJR index 0.258
SJR Q rank Q3

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 832 EUR / 916 USD
Print + online subscription: 960 EUR / 1054 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 38 0 0
Dec 2024 25 0 0
Jan 2025 25 0 0
Feb 2025 32 0 0
Mar 2025 29 0 0
Apr 2025 6 0 0
May 2025 5 0 0