Authors:
T. Magyar Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, P.O. Box 18, Hungary

Search for other papers by T. Magyar in
Current site
Google Scholar
PubMed
Close
,
R. Glávits Central Veterinary Institute, Budapest, Hungary

Search for other papers by R. Glávits in
Current site
Google Scholar
PubMed
Close
,
G. D. Pullinger Oral Microbiology, Guy’s, King’s and St Thomas’ Dental Institute, King’s College London, London, UK

Search for other papers by G. D. Pullinger in
Current site
Google Scholar
PubMed
Close
, and
A. J. Lax Oral Microbiology, Guy’s, King’s and St Thomas’ Dental Institute, King’s College London, London, UK

Search for other papers by A. J. Lax in
Current site
Google Scholar
PubMed
Close
Restricted access

The effect of dermonecrotic toxin (DNT) expression of Bordetella bronchiseptica was studied in mice by comparing the pathology induced by a wild type strain with that induced by an isogenic DNT- strain in which part of the structural gene has been replaced by an antibiotic resistance cassette. While extracts of strain B58 proved toxic in intravenously inoculated mice, similar extracts from strain B58GP had lost toxic activity. The parent (B58) and the mutant (B58GP) strains of B. bronchiseptica each possessed comparable virulence for mice. These findings confirmed that DNT production was successfully abolished in strain B58GP while other virulence characteristics required for pathogenicity in mice remained intact, at a comparable level to the parent strain. Turbinate atrophy was observed in mice infected with the DNT+ strain, but not in those infected with the DNT-strain. This indicates that DNT is the cause of turbinate atrophy in the mice and not other factors produced by phase I strains of B. bronchiseptica. B. bronchiseptica DNT showed a lienotoxic effect (lymphocyte depletion and a reduction in the intensity of extramedullar haemocytopoieis) that is considered to adversely alter the immune function of the host animal. In mice infected with strain B58GP, catarrhal pneumonia with characteristic lympho-histiocytic peribronchial and perivascular infiltration was noticed. In mice infected with strain B58, large necrotic areas were seen surrounded by an inflammatory reaction. The DNT appears to directly damage lung tissues, at least in mice. DNT production seems to enhance the establishment of B. bronchiseptica in the lungs, presumably by reducing the local resistance and causing severe local damage to the lung tissues.

  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ferenc BASKA

Editorial assistant: Szilvia PÁLINKÁS

 

Editorial Board

  • Mária BENKŐ (Acta Veterinaria Hungarica, Budapest, Hungary)
  • Gábor BODÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Béla DÉNES (University of Veterinary Medicine, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (University of Veterinary Medicine, Budapest, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • János GÁL (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Dušan PALIĆ (Ludwig Maximilian University, Munich, Germany)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 287 7073 (ed.-in-chief) or (36 1) 467 4081 (editor)

E-mail: acta.veterinaria@univet.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2023  
Web of Science  
Journal Impact Factor 0.7
Rank by Impact Factor Q3 (Veterinary Sciences)
Journal Citation Indicator 0.4
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Veterinary)
SNIP 0.39
Scimago  
SJR index 0.258
SJR Q rank Q3

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 832 EUR / 916 USD
Print + online subscription: 960 EUR / 1054 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 13 0 0
Jul 2024 46 0 0
Aug 2024 24 0 0
Sep 2024 12 1 1
Oct 2024 94 0 0
Nov 2024 12 0 0
Dec 2024 0 0 0