View More View Less
  • 1 University of Veterinary Medicine, Budapest, Hungary
  • | 2 Szent István University, Páter Károly u. 1, H-2100 Gödöllő, Hungary
  • | 3 Yale University School of Medicine, New Haven, CT, USA
  • | 4 New York University, New York, NY, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E2) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10–10 M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E2) regulation of TRα,β in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E2. The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand–receptor interaction.

  • Abel, E. D., Moura, E. G., Ahima, R. S., Campos-Barros, A., Pazos-Moura, C. C., Boers, M. E., Kaulbach, H. C., Forrest, D. and Wondisford, F. E. (2003): Dominant inhibition of thyroid hormone action selectively in the pituitary of thyroid hormone receptor-beta null mice abolishes the regulation of thyrotropin by thyroid hormone. Mol. Endocrinol. 17, 17671776.

    • Search Google Scholar
    • Export Citation
  • Amma, L. L., Campos-Barros, A., Wang, Z. and Forrest, D. (2001): Distinct tissue-specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression. Mol. Endocrinol. 15, 467475.

    • Search Google Scholar
    • Export Citation
  • Avissar-Whiting, M., Veiga, K. R., Uhl, K. M., Maccani, M. A., Gagne, L. A., Moen, E. L. and Marsit, C. J. (2010): Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 29, 401406.

    • Search Google Scholar
    • Export Citation
  • Babu, S., Uppu, S., Claville, M. O. and Uppu, R. M. (2013): Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Toxicol. Mech. Methods 23, 273280.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. M. (2008): Rapid signaling mechanisms of estrogens in the developing cerebellum. Brain Res. Rev. 57, 481492.

  • Belcher, S. M. and Zsarnovszky, A. (2001): Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J. Pharmacol. Exp. Ther. 299, 408414.

    • Search Google Scholar
    • Export Citation
  • Billon, N., Jolicoeur, C., Tokumoto, Y., Vennstrom, B. and Raff, M. (2002): Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1. The EMBO Journal 21, 64526460.

    • Search Google Scholar
    • Export Citation
  • Bradley, D. J., Towle, H. C. and Young, W. S. (1994): Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. USA 91, 439443.

    • Search Google Scholar
    • Export Citation
  • Delfosse, V., Grimaldi, M., Maire, A., Bourguet, W. and Balaguer, P. (2014): Nuclear receptor profiling of bisphenol-A and its halogenated analogues. Vitam. Horm. 94, 229251.

    • Search Google Scholar
    • Export Citation
  • Esaki, T., Suzuki, H., Cook, M., Shimoji, K., Cheng, S. Y., Sokoloff, L. and Nunez, J. (2003): Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology 144, 41174122.

    • Search Google Scholar
    • Export Citation
  • Fan, X., Xu, H., Warner, M. and Gustafsson, J. A. (2010): ERbeta in CNS: new roles in development and function. Prog. Brain Res. 181, 233250.

    • Search Google Scholar
    • Export Citation
  • Fauquier, T., Chatonnet, F., Picou, F., Richard, S., Fossat, N., Aguilera, N., Lamonerie, T. and Flamant, F. (2014): Purkinje cells and Bergmann glia are primary targets of the TRa1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 141, 166175.

    • Search Google Scholar
    • Export Citation
  • Flores-Morales, A., Gullberg, H., Fernandez, L., Stahlberg, N., Lee, N. H., Vennstrom, B. and Norstedt, G. (2002): Patterns of liver gene expression governed by TRbeta. Mol. Endocrinol. 16, 12571268.

    • Search Google Scholar
    • Export Citation
  • Gentilcore, D., Porreca, I., Rizzo, F., Ganbaatar, E., Carchia, E., Mallardo, M., de Felice, M. and Ambrosino, C. (2013): Bisphenol A interferes with thyroid specific gene expression. Toxicology 304, 2131.

    • Search Google Scholar
    • Export Citation
  • Gothe, S., Wang, Z., Ng, L., Kindblom, J. M., Barros, A. C., Ohlsson, C., Vennstrom, B. and Forrest, D. (1999): Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 13, 13291341.

    • Search Google Scholar
    • Export Citation
  • Huc, L., Lemarie, A., Gueraud, F. and Helies-Toussaint, C. (2012): Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol. In Vitro 26, 709717.

    • Search Google Scholar
    • Export Citation
  • Iwamuro, S., Yamada, M., Kato, M. and Kikuyama, S. (2006): Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and downregulation of retinoid X receptor gamma in Xenopus tail culture. Life Sci. 79, 21652171.

    • Search Google Scholar
    • Export Citation
  • Kariv, R., Enden, A., Zvibel, I., Rosner, G., Brill, S., Shafritz, D. A., Halpern, Z. and Oren, R. (2003): Triiodothyronine and interleukin-6 (IL6) induce expression of HGF in an immortalized rat hepatic stellate cell line. Liver Int. 23, 187193.

    • Search Google Scholar
    • Export Citation
  • Leonard, J. L. (1988): Dibutyryl cAMP induction of type II 5'deiodinase activity in rat brain astrocytes in culture. Biochem. Biophys. Res. Commun. 151, 11641172.

    • Search Google Scholar
    • Export Citation
  • Leonard, J. L. (2008): Non-genomic actions of thyroid hormone in brain development. Steroids 73, 10081012.

  • Martinez-Galan, J. R., Pedraza, P., Santacana, M., Escobar del Ray, F., Morreale de Escobar, G. and Ruiz-Marcos, A. (1997): Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J. Clin. Invest. 99, 27012709.

    • Search Google Scholar
    • Export Citation
  • Mathisen, G. H., Yazdani, M., Rakkestad, K. E., Aden, P. K., Bodin, J., Samuelsen, M., Nygaard, U. C., Goverud, I. L., Gaarder, M., Loberg, E. M., Bolling, A. K., Becher, R. and Paulsen, R. E. (2013): Prenatal exposure to bisphenol A interferes with the development of cerebellar granule neurons in mice and chicken. Int. J. Dev. Neurosci. 31, 762769.

    • Search Google Scholar
    • Export Citation
  • Miodovnik, A., Edwards, A., Bellinger, D. C. and Hauser, R. (2014): Developmental neurotoxicity of ortho-phthalate diesters: review of human and experimental evidence. Neurotoxicology 41, 112122.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, Y. and Tayama, S. (2000): Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol. 74, 99105.

    • Search Google Scholar
    • Export Citation
  • Ng, L., Pedraza, P. E., Faris, J. S., Vennstrom, B., Curran, T., Morreale de Escobar, G. and Forrest, D. (2001): Audiogenic seizure susceptibility in thyroid hormone receptor beta-deficient mice. Neuroreport 12, 23592362.

    • Search Google Scholar
    • Export Citation
  • O’Shea, P. J., Bassett, J. H., Sriskantharajah, S., Ying, H., Cheng, S. Y. and Williams, G. R. (2005): Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta. Mol. Endocrinol. 19, 30453059.

    • Search Google Scholar
    • Export Citation
  • Pasquini, J. M. and Adamo, A. M. (1994): Thyroid hormones and the central nervous system. Dev. Neurosci. 16, 18.

  • Plateroti, M., Kress, E., Mori, J. I. and Samarut, J. (2006): Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol. Cell. Biol. 26, 32043214.

    • Search Google Scholar
    • Export Citation
  • Scalise, T. J., Gyorffy, A., Tóth, I., Kiss, D. S., Somogyi, V., Goszleth, G., Bartha, T., Frenyó, L. V. and Zsarnovszky, A. (2012): Ligand-induced changes in oestrogen and thyroid hormone receptor expression in the developing rat cerebellum: A comparative quantitative PCR and Western blot study. Acta Vet. Hung. 60, 263284.

    • Search Google Scholar
    • Export Citation
  • Sheng, Z. G., Tang, Y., Liu, Y. X., Yuan, Y., Zhao, B. Q., Chao, X. J. and Zhu, B. Z. (2012): Low concentrations of bisphenol A suppress thyroid hormone receptor transcription through a nongenomic mechanism. Toxicol. Appl. Pharmacol. 259, 133142.

    • Search Google Scholar
    • Export Citation
  • Shikimi, H., Sakamoto, H., Mezaki, Y., Ukena, K. and Tsutsui, K. (2004): Dendritic growth in response to environmental estrogens in the developing Purkinje cell in rats. Neurosci. Lett. 364, 114118.

    • Search Google Scholar
    • Export Citation
  • Siesser, W. B., Cheng, S. Y. and McDonald, M. P. (2005): Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRbetaPV knock-in mouse. Psychopharmacology (Berl.) 181, 653663.

    • Search Google Scholar
    • Export Citation
  • Simorangkir, D. R., Wreford, N. G. and De Kretser, D. M. (1997): Impaired germ cell development in the testes of immature rats with neonatal hypothyroidism. J. Androl. 18, 186193.

    • Search Google Scholar
    • Export Citation
  • Somogyi, V., Gyorffy, A., Scalise, T. J., Kiss, D. S., Goszleth, G., Bartha, T., Frenyó, V. L. and Zsarnovszky, A. (2011): Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin. Nutr. Res. Rev. 24, 132154.

    • Search Google Scholar
    • Export Citation
  • Tilghman, S. L., Bratton, M. R., Segar, H. C., Martin, E. C., Rhodes, L. V., Li, M., McLachlan, J. A., Wiese, T. E., Nephew, K. P. and Burow, M. E. (2012): Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 7, e32754.

    • Search Google Scholar
    • Export Citation
  • Vasudevan, N., Koibuchi, N., Chin, W. W. and Pfaff, D. W. (2001): Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Brain Res. Mol. Brain Res. 95, 917.

    • Search Google Scholar
    • Export Citation
  • Veiga-Lopez, A., Luense, L. J., Christenson, L. K. and Padmanabhan, V. (2013): Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 154, 18731884.

    • Search Google Scholar
    • Export Citation
  • Wong, J. K., Kennedy, P. R. and Belcher, S. M. (2001): Simplified serum- and steroid-free culture conditions for the high-throughput viability analysis of primary cultures of cerebellar neurons. J. Neurosci. Methods 110, 4555.

    • Search Google Scholar
    • Export Citation
  • Wong, J. K., Le, H. H., Zsarnovszky, A. and Belcher, S. M. (2003): Estrogens and ICI182,780 (Faslodex) modulate mitosis and cell death in immature cerebellar neurons via rapid activation of p44/p42 mitogen-activated protein kinase. J. Neurosci. 23, 49844995.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Liu, Y., Sadamatsu, M., Tsutsumi, S., Akaike, M., Ushijima, H. and Kato, N. (2007): Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci. Res. 58, 149155.

    • Search Google Scholar
    • Export Citation
  • Xu, X., Lu, Y., Zhang, G., Chen, L., Tian, D., Shen, X., Yang, Y. and Dong, F. (2014): Bisphenol A promotes dendritic morphogenesis of hippocampal neurons through estrogen receptormediated ERK1/2 signal pathway. Chemosphere 96, 129137.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, H., Zhu, J., Yu, T., Sasaki, K., Umetsu, H., Kidachi, Y. and Ryoyama, K. (2006): Low-level bisphenol A increases production of glial fibrillary acidic protein in differentiating astrocyte progenitor cells through excessive STAT3 and Smad1 activation. Toxicology 226, 131142.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. Z., Yong L., Jia, X. D., Li, N. and Fan, Y. X. (2013): Combined subchronic toxicity of bisphenol A and dibutyl phthalate on male rats. Biomed. Environ. Sci. 26, 6369.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., Lorenc, H., Stephenson, H., Wang, Y. J., Witherspoon, D., Katzenellenbogen, B., Pfaff, D. and Vasudevan, N. (2005): Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. Proc. Natl. Acad. Sci. USA 102, 48904895.

    • Search Google Scholar
    • Export Citation
  • Zoeller, R. T. (2005): Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals? Mol. Cell. Endocrinol. 242, 1015.

    • Search Google Scholar
    • Export Citation
  • Zoeller, R. T., Bansal, R. and Parris, C. (2005): Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146, 607612.

    • Search Google Scholar
    • Export Citation
  • Zsarnovszky, A., Földvári, E. G., Rónai, Z., Bartha, T. and Frenyó, L. V. (2007): Oestrogens in the mammalian brain: from conception to adulthood –a review. Acta Vet. Hung. 55, 333347.

    • Search Google Scholar
    • Export Citation
  • Zsarnovszky, A., Le, H. H., Wang, H. S. and Belcher, S. M. (2005): Ontogeny of rapid estrogenmediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A. Endocrinology 146, 53885396.

    • Search Google Scholar
    • Export Citation

Author information is available in PDF.
Please, download the file from HERE.

The manuscript preparation instructions is available in PDF.
Please, download the file from HERE.

Senior editors

Editor-in-Chief: Mária BENKŐ

Managing Editor: András SZÉKELY

Editorial Board

  • Béla DÉNES (National Food Chain Safety Office, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (National Agricultural Innovation Centre, Herceghalom, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 467 4081 (ed.-in-chief) or (36 1) 213 9793 (editor) Fax: (36 1) 467 4076 (ed.-in-chief) or (36 1) 213 9793

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2020  
Total Cites 987
WoS
Journal
Impact Factor
0,955
Rank by Veterinary Sciences 101/146 (Q3)
Impact Factor  
Impact Factor 0,920
without
Journal Self Cites
5 Year 1,164
Impact Factor
Journal  0,57
Citation Indicator  
Rank by Journal  Veterinary Sciences 93/166 (Q3)
Citation Indicator   
Citable 49
Items
Total 49
Articles
Total 0
Reviews
Scimago 33
H-index
Scimago 0,395
Journal Rank
Scimago Veterinary (miscellaneous) Q2
Quartile Score  
Scopus 355/217=1,6
Scite Score  
Scopus General Veterinary 73/183 (Q2)
Scite Score Rank  
Scopus 0,565
SNIP  
Days from  145
sumbission  
to acceptance  
Days from  150
acceptance  
to publication  
Acceptance 19%
Rate

 

2019  
Total Cites
WoS
798
Impact Factor 0,991
Impact Factor
without
Journal Self Cites
0,897
5 Year
Impact Factor
1,092
Immediacy
Index
0,119
Citable
Items
59
Total
Articles
59
Total
Reviews
0
Cited
Half-Life
9,1
Citing
Half-Life
9,2
Eigenfactor
Score
0,00080
Article Influence
Score
0,253
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,09791
Average
IF
Percentile
42,606
Scimago
H-index
32
Scimago
Journal Rank
0,372
Scopus
Scite Score
335/213=1,6
Scopus
Scite Score Rank
General Veterinary 62/178 (Q2)
Scopus
SNIP
0,634
Acceptance
Rate
18%

 

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 696 EUR / 872 USD
Print + online subscription: 804 EUR / 1004 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Publication
Programme
2020 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 33 0 0
Mar 2021 17 0 0
Apr 2021 16 0 0
May 2021 7 0 0
Jun 2021 34 0 0
Jul 2021 42 2 1
Aug 2021 1 0 0