Currently, there is a growing interest in combining anticancer drugs with the aim to improve outcome in patients suffering from tumours and reduce the long-term toxicity associated with the current standard of treatment. In this study, we evaluated the possible role of deracoxib against the toxicity of doxorubicin on normal canine mammary epithelial cells. The effect of deracoxib and doxorubicin combination on cell viability was determined by MTT assay. Apoptosis was characterised by flow cytometry. Cell nitrite concentrations were measured with the Griess reaction. Deracoxib (50 and 100 μM) treatment decreased the cytotoxic action of doxorubicin at 0.9 μM in the cells, from 33.63% to 13.4% and 25.82%, respectively. Our results also showed that the reverse effect of deracoxib on doxorubicin-induced cytotoxic activity in the cells was associated with a marked (3.04- to 3.57-fold) decrease in apoptosis. In additional studies identifying the mechanism of the observed effect, deracoxib exhibited an activity to prevent doxorubicin-mediated overproduction of nitric oxide in the cells. Our in vitro study results indicate that deracoxib (50 and 100 μM) can be beneficial in protecting normal cells from the toxic effect of doxorubicin in conjunction with apoptosis by the modulation of nitric oxide production.
Abou El Hassan, M. A. I., Verheul, H. M. W., Jorna, A. S., Schalkwijk, C., van Bezu, J., van der Vijgh, W. J. F. and Bast, A. (2003): The new cardioprotector monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro. Br. J. Cancer. 89, 357–362.
Akdeniz, N., Esrefoglu, M., Keles, M., Karakuzu, A. and Atasoy, M. (2004): Serum interleukin-2, interleukin- 6, tumour necrosis factor-alpha and nitric oxide levels in patients with Behcet’s disease. Ann. Acad. Med. Singap. 33, 596–599.
Al-Lazikani, B., Banerji, U. and Workman, P. (2012): Combinational drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692.
Alshafie, G. A., Abou-Issa, H. M., Seibert, K. and Harris, R. E. (2000): Chemotherapeutic evaluation of Celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumor model. Oncol. Rep. 7, 1377–1381.
Asanuma, M., Nishibayashi-Asanuma, S., Miyazaki, I., Kohno, M. and Ogawa, N. (2001): Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem. 76, 1895–1904.
Awara, W. M., El-Sisi, A. E., El-Sayad, M. E. and Goda, A. E. (2004): The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumor activity of doxorubicin? Pharmacol. Res. 50, 487–498.
Bakirel, T., Ustun Alkan, F., Ustuner, O., Cinar, S., Yildirim, F., Erten, G. and Bakirel, U. (2016): Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27. J. Vet. Med. Sci. 78, 657–668.
Chen, L. G., Yang, L. L. and Wang, C. C. (2008): Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol. 46, 688–693.
Du, Z. Y. and Li, X. Y. (1999): Inhibitory effects of indomethacin on interleukin-1 and nitric oxide production in rat microglia in vitro. Int. J. Immunopharmacol. 21, 219–225.
Elmore, S. (2007): Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 495–516.
Falandry, C., Canney, P. A., Freyer, G. and Dirix, L. Y. (2009): Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 20, 615–620.
Farivar, R. S., Chobanian, A. V. and Brecher, P. (1996): Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ. Res. 78, 759–768.
Gallouet, A. S., Travert, M., Bresson-Bepoldin, L., Guilloton, F., Pangault, C., Caulet-Maugendre, S., Lamy, T., Tarte, K. and Guillaudeux, T. (2014): COX-2-independent effects of celecoxib sensitize lymphoma B cells to TRAIL-mediated apoptosis. Clin. Cancer Res. 20, 2663–2673.
Gustafson, D. L. and Page, R. L. (2013): Cancer chemotherapy. In: Withrow, S., Vail, D. and Page, R. (eds) Withrow and MacEwen’s Small Animal Clinical Oncology. 5th edition, Elsevier Health Sciences, Missouri. pp. 157–179.
Hao, E., Mukhopadhyay, P., Cao, Z., Erdélyi, K., Holovac, E., Liaudet, L., Lee, W-S., Haskó, G., Mechoulam, R. and Pacher, P. (2015): Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol. Med. 21, 38–45.
Hilovska, L., Jendzelovsky, R. and Fedorocko, P. (2015): Potency of non-steroidal anti-inflammatory drugs in chemotherapy (Review). Mol. Clin. Oncol. 3, 3–12.
Indran, I. R., Tufo, G., Pervaiz, S. and Brenner, C. (2011): Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta 1807, 735–745.
Ismael, G. F. V., Rosa, D. D., Mano, M. S. and Awada, A. (2008): Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat. Rev. 34, 81–91.
Jastrzebska, E., Flis, S., Rakowska, A., Chudy, M., Jastrzebski, Z., Dybko, A. and Brzozka, Z. (2013): A microfluidic system to study the cytotoxic effect of drugs: The combined effect of celecoxib and 5-fluorouracil on normal and cancer cells. Microchim. Acta 180, 895–901.
Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T. C. and Dessiris, A. (2001): Adjuvant postoperative chemotherapy in bitches with mammary cancer. J. Vet. Med. A 48, 85–96.
Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T. C. and Dessiris, A. (2005): Histological grading and prognosis in dogs with mammary carcinomas: Application of a human grading method. J. Comp. Pathol. 133, 246–252.
Koki, A. T. and Masferrer, J. L. (2002): Celecoxib: A specific COX-2 inhibitor with anticancer properties. Cancer Control 9, 28–35.
Kunwar, A., Barik, A., Mishra, B., Rathinasamy, K., Pandey, R. and Priyadarsini, K. I. (2008): Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta 1780, 673–679.
Leth-Larsen, R., Lund, R. R. and Ditzel, H. J. (2010): Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol. Cell. Proteomics 9, 1369–1382.
McMillan, S. K., Boria, P., Moore, G. E., Widmer, W.R., Bonney, P. L. and Knapp, D. W. (2011): Antitumor effects of deracoxib treatment in 26 dogs with transitional cell carcinoma of the urinary bladder. JAVMA 239, 1084–1089.
Meng, X., Zhang, Q., Zheng, G., Pang, R., Hua, T., Yang, S. and Li, J. (2014): Doxorubicin combined with celecoxib inhibits tumor growth of medullary thyroid carcinoma in xenografted mice. Oncol. Lett. 7, 2053–2058.
Meyer, M., Schreck, R. and Baeuerle, P. A. (1993): H2O2 and antioxidants have opposite effects on activation of NF-Kb and AP-1 in intact cells: aP-1 as secondary antioxidant-responsive factor. EMBO J. 12, 2005–2015.
Mizutani, H., Tada-Oikawa, S., Hiraku, Y., Kojima, M. and Kawanishi, S. (2005): Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 76, 1439–1453.
Mukhopadhyay, P., Rajesh, M., Batkai, S., Kashiwaya, Y., Hasko, G., Liaudet, L., Szabo, C. and Pacher, P. (2009): Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am. J. Physiol. Heart Circ. Physiol. 296, 1466–1483.
Narang, A. S. and Desai, D. S. (2009): Anticancer drug development. In: Lu, Y. and Mahato, R. I. (eds) Pharmaceutical Perspectives of Cancer Therapeutics, 16th edition. Springer Science & Business Media, New York. pp. 49–92.
Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J. and Moens, A. L. (2012): Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 52, 1213–1225.
Ozen, S., Usta, Y., Sahin-Erdemli, I., Orhan, D., Gumusel, B., Yang, B., Gursoy, Y., Tulunay, O., Dalkara, T., Bakkaloglu, A. and El Nahas, M. (2001): Association of nitric oxide production and apoptosis in a model of experimental nephropathy. Nephrol. Dial. Transpl. 16, 32–38.
Ozgocmen, S., Ardicoglu, O., Erdogan, H., Fadillioglu, E. and Gudul, H. (2005): In vivo effect of celecoxib and tenoxicam on oxidant/anti-oxidant status of patients with knee osteoarthritis. Ann. Clin. Lab. Sci. 35, 137–143.
Pagnini, U., Florio, S., Lombardi, P., d’Angelo, D., Avallone, L., Galdiero, M., Iovane, G., Tortora, G. and Pagnini, G. (2000): Modulation of anthracycline activity in canine mammary tumour cells in vitro by medroxyprogesterone acetate. Res. Vet. Sci. 69, 255–262.
Patel, M. I., Subbaramaiah, K., Du, B., Chang, M., Yang, P., Newman, R.A., Cordon-Cardo, C., Thaler, H. T. and Dannenberg, A. J. (2005): Celecoxib inhibits prostate cancer growth: Evidence of a cyclooxygenase-2-independent mechanism. Clin. Cancer Res. 11, 1999–2007.
Pereg, D. and Lishner, M. (2005): Non-steroidal anti-inflammatory drugs for the prevention and treatment of cancer. J. Intern. Med. 258, 115–123.
Pereira, P. D., Lopes, C. C., Matos, A. J. F., Pinto, D., Gartner, F., Lopes, C. and Medeiros, R. (2009): Influence of catechol-o-methyltransferase (COMT) genotypes on the prognosis of canine mammary tumors. Vet. Pathol. 46, 1270–1274.
Rai, R. B., Saminathan, M., Dhama, K., Ranganath, G. J., Murugesan, V., Kannan, K., Pavulraj, S., Gopalakris, A. and Suresh, C. (2014): Histopathology and immunohistochemical expression of n-methyl-n-nitrosourea (NMU) induced mammary tumours in Sprague-Dawley rats. Asian J. Anim. Vet. Adv. 9, 621–640.
Ralph, S., Pritchard, R., Rodríguez-Enríquez, S., Moreno-Sánchez, R. and Ralph, R. (2015): Hitting the bull’s-eye in metastatic cancers — NSAIDs elevate ROS in mitochondria, inducing malignant cell death. Pharmaceuticals (Basel) 8, 62–106.
Rao, P. and Knaus, E. E. (2008): Evaluation of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci. 11, 81–110.
Rayburn, E. R., Ezell, S. J. and Zhang, R. (2009): Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol. 1, 29–43.
Rehman, M. U., Tahir, M., Khan, A. Q., Khan, R., Oday, O. H., Lateef, A., Hassan, S.K., Rashid, S., Ali, N., Zeeshan, M. and Sultana, S. (2014): D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NF B in kidneys of Wistar rats. Exp. Biol. Med. 239, 465–476.
Roberts, E. S., Van Lare, K. A., Marable, B. R. and Salminen, W. F. (2009): Safety and tolerability of 3-week and 6-month dosing of Deramaxx® (Deracoxib) chewable tablets in dogs. J. Vet. Pharmacol. Ther. 32, 329–337.
Sanchez de Miguel, L., de Frutos, T., Gonzalez-Fernandez, F., del Pozo, V., Lahoz, C., Jimenez, A., Rico, L., Garcia, R., Aceituno, E., Millas, I., Gomez, J., Farre, J., Casado, S. and Lopez- Farre, A. (1999): Aspirin inhibits inducible nitric oxide synthase expression and tumor necrosis factor-alpha release by cultured smooth muscle cells. Eur. J. Clin. Invest. 29, 93–99.
Schreck, R., Rieber, P. and Baeuerle, P. A. (1991): Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV–1. EMBO J. 10, 2247–2258.
Shi, Y. (2001): A structural view of mitochondria-mediated apoptosis. Nat. Struct. Mol. Biol. 8, 394–401.
Simon, D., Schoenrock, D., Baumgärtner, W. and Nolte, I. (2006): Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with Doxorubicin and Docetaxel. J. Vet. Intern. Med. 20, 1184–1190.
Smalley, M. J. (2010): Isolation, culture and analysis of mouse mammary epithelial cells. In: Ward, A. and Tosh, D. (eds) Mouse Cell Culture, 1st edition. Springer Science & Business Media, LCC. pp. 139–170.
Souza, C. H. M., Toledo-Piza, E., Amorin, R., Barboza, A. and Tobias, K. M. (2009): Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can. Vet. J. 50, 506–510.
Todorova, I., Simeonova, G., Simeonov, R. and Dinev, D. (2005): Efficacy and toxicity of doxorubicin and cyclophosphamide chemotherapy in dogs with spontaneous mammary tumours. TJS 3, 51–58.
Ustun Alkan, F., Bakirel, T., Ustuner, O. and Yardibi, H. (2014): In vitro effects of doxorubicin and deracoxib on oxidative-stress-related parameters in canine mammary carcinoma cells. Acta Vet. Hung. 62, 372–385.
Ustun Alkan, F., Ustuner, O., Bakirel, T., Cinar, S., Erten, G. and Deniz, G. (2012): The effects of piroxicam and deracoxib on canine mammary tumour cell line. Sci. World J. 2012, 1–8.
van Wijngaarden, J., Van Beek, E., Van Rossum, G., Van Der Bent, C., Hoekman, K., Van Der Pluijm, G., Van Der Pol, M.A., Broxterman, H.J., Van Hinsbergh, V. W. M. and Löwik, C. W. G. M. (2007): Celecoxib enhances doxorubicin-induced cytotoxicity in MDA-MB231 cells by NF-κB-mediated increase of intracellular doxorubicin accumulation. Eur. J. Cancer 43, 433–442.
Wolfe, L. G., Smith, B. B., Toivio-Kinnucan, M. A., Sartin, E. A., Kwapien, R.P., Henderson, R. A. and Barnes, S. (1986): Biologic properties of cell lines derived from canine mammary carcinomas. J. Natl Cancer Inst. 77, 783–792.
Wolfesberger, B., Hoelzl, C., Walter, I., Reider, G. A., Fertl, G., Thalhammer, J. G., Skalicky, M. and Egerbacher, M. (2006): In vitro effects of meloxicam with or without doxorubicin on canine osteosarcoma cells. J. Vet. Pharmacol. Ther. 29, 15–23.