View More View Less
  • 1 Fc, Mashhad, Iran
  • 2 University of Tehran, Tehran, Iran
  • 3 Ferdowsi University of Mashhad, Mashhad, Iran
  • 4 University of Saarland, Homburg/Saar, Germany
  • 5 Ferdowsi University of Mashhad, Mashhad, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Clostridium (Clostridioides) difficile is a Gram-positive anaerobic rod-shaped bacterium and the main cause of nosocomial diarrhoea in humans. In recent years, the transmission of C. difficile from environmental reservoirs (e.g. food) to humans has become a major focus of research. The aim of this study was to investigate the prevalence and corresponding toxin genes of C. difficile in faecal samples and meat of quails. Thirty samples of packed quail meat in Mashhad, Iran and 500 faecal samples (pooled to n = 5) were collected on quail farms in the Northeastern Khorasan region for further investigation. Of 100 pooled quail faecal samples 10% showed cultural growth of C. difficile. In meat samples two out of 30 specimens (7%) showed cultural growth. In six of ten isolates from faecal samples toxin genes (tcdB and tcdA) were present, while four isolates harboured no toxin genes. However, in meat isolates no toxin genes were present. Mutations in the tcdC gene were not detected, indicating that ‘hypervirulent’ strains such as RT027 and RT078 were not present. The data suggest that quail and quail products might hold a potential for the spread of C. difficile.

  • Abdel-Glil, M. Y., Thomas, P., Schmoock, G., Abou-El-Azm, K., Wieler, L. H., Neubauer, H. and Seyboldt, C. (2018): Presence of Clostridium difficile in poultry and poultry meat in Egypt. Anaerobe 51, 2125.

    • Search Google Scholar
    • Export Citation
  • al Saif, N. and Brazier, J. S. (1996): The distribution of Clostridium difficile in the environment of South Wales. J. Med. Microbiol. 45, 133137.

    • Search Google Scholar
    • Export Citation
  • Antikainen, J., Pasanen, T., Mero, S., Tarkka, E., Kirveskari, J., Kotila, S., Mentula, S., Kononen, E., Virolainen-Julkunen, A. R., Vaara, M. and Tissari, P. (2009): Detection of virulence genes of Clostridium difficile by multiplex PCR. APMIS 117, 607613.

    • Search Google Scholar
    • Export Citation
  • Azimirad, M., Krutova, M., Nyc, O., Hasani, Z., Afrisham, L., Alebouyeh, M. and Zali, M. R. (2017): Molecular typing of Clostridium difficile isolates cultured from patient stool samples and gastroenterological medical devices in a single Iranian hospital. Anaerobe 47, 125128.

    • Search Google Scholar
    • Export Citation
  • Baverud, V. (2002): Clostridium difficile infections in animals with special reference to the horse. A review. Vet. Q. 24, 203219.

  • Belanger, S. D., Boissinot, M., Clairoux, N., Picard, F. J. and Bergeron, M. G. (2003): Rapid detection of Clostridium difficile in feces by real-time PCR. J. Clin. Microbiol. 41, 730734.

    • Search Google Scholar
    • Export Citation
  • Borriello, S. P., Honour, P., Turner, T. and Barclay, F. (1983): Household pets as a potential reservoir for Clostridium difficile infection. J. Clin. Pathol. 36, 8487.

    • Search Google Scholar
    • Export Citation
  • Crobach, M. J., Planche, T., Eckert, C., Barbut, F., Terveer, E. M., Dekkers, O. M., Wilcox, M. H. and Kuijper, E. J. (2016): European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 22, Suppl. 4, S6381.

    • Search Google Scholar
    • Export Citation
  • Curry, S. R., Marsh, J. W., Muto, C. A., O’Leary, M. M., Pasculle, A. W. and Harrison, L. H. (2007): tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J. Clin. Microbiol. 45, 215221.

    • Search Google Scholar
    • Export Citation
  • Dupuy, B., Govind, R., Antunes, A. and Matamouros, S. (2008): Clostridium difficile toxin synthesis is negatively regulated by TcdC. J. Med. Microbiol. 57, 685689.

    • Search Google Scholar
    • Export Citation
  • Gerding, D. N., Johnson, S., Rupnik, M. and Aktories, K. (2014): Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5, 1527.

    • Search Google Scholar
    • Export Citation
  • Hussain, I., Borah, P., Sharma, R. K., Rajkhowa, S., Rupnik, M., Saikia, D. P., Hasin, D., Hussain, I., Deka, N. K., Barkalita, L. M., Nishikawa, Y. and Ramamurthy, T. (2016): Molecular characteristics of Clostridium difficile isolates from human and animals in the North Eastern region of India. Mol. Cell. Probes 30, 306311.

    • Search Google Scholar
    • Export Citation
  • Indra, A., Lassnig, H., Baliko, N., Much, P., Fiedler, A., Huhulescu, S. and Allerberger, F. (2009): Clostridium difficile: a new zoonotic agent? Wien. Klin. Wochenschr. 121, 9195.

    • Search Google Scholar
    • Export Citation
  • Jalali, M., Khorvash, F., Warriner, K. and Weese, J. S. (2012): Clostridium difficile infection in an Iranian hospital. BMC Res. Notes 5, 159.

    • Search Google Scholar
    • Export Citation
  • Knetsch, C. W., Connor, T. R., Mutreja, A., van Dorp, S. M., Sanders, I. M., Browne, H. P., Harris, D., Lipman, L., Keessen, E. C., Corver, J., Kuijper, E. J. and Lawley, T. D. (2014):. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill. 19, 20954.

    • Search Google Scholar
    • Export Citation
  • Kouhsari, E., Douraghi, M., Fakhre Yaseri, H., Talebi, M., Ahmadi, A., Sholeh, M. and Amirmozafari, N. (2019): Molecular typing of Clostridioides difficile isolates from clinical and non-clinical samples in Iran. APMIS 127, 222227.

    • Search Google Scholar
    • Export Citation
  • Lawson, P. A., Citron, D. M., Tyrrell, K. L. and Finegold, S. M. (2016): Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe 40, 9599.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, S. L., Arroyo, L. G. and Weese, J. S. (2006): Epidemic Clostridium difficile strain in hospital visitation dog. Emerg. Infect. Dis. 12, 10361037.

    • Search Google Scholar
    • Export Citation
  • Levett, P. N. (1986): Clostridium difficile in habitats other than the human gastro-intestinal tract. J. Infect. 12, 253263.

  • Nasar, A., Rahman, A., Hoque, N., Kumar Talukder, A. and Das, Z. C. (2016): A survey of Japanese quail (Coturnix coturnix japonica) farming in selected areas of Bangladesh. Vet. World 9, 940947.

    • Search Google Scholar
    • Export Citation
  • Persson, S., Jensen, J. N. and Olsen, K. E. (2011): Multiplex PCR method for detection of Clostridium difficile tcdA, tcdB, cdtA, and cdtB and internal in-frame deletion of tcdC. J. Clin. Microbiol. 49, 42994300.

    • Search Google Scholar
    • Export Citation
  • Persson, S., Torpdahl, M. and Olsen, K. E. (2008): New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 14, 10571064.

    • Search Google Scholar
    • Export Citation
  • Rupnik, M., Wilcox, M. H. and Gerding, D. N. (2009): Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526536.

    • Search Google Scholar
    • Export Citation
  • Saka, J. O., Oyegbami, A., Okere, I. A., Omole, A. J. and Fayenuwo, J. O. (2018): Production systems of Japanese quail (Coturnix coturnix japonica) in the urban communities of southwestern Nigeria. Trop. Anim. Health Prod. 50, 12951303.

    • Search Google Scholar
    • Export Citation
  • Samie, A., Obi, C. L., Franasiak, J., Archbald-Pannone, L., Bessong, P. O., Alcantara-Warren, C. and Guerrant, R. L. (2008): PCR detection of Clostridium difficile triose phosphate isomerase (tpi), toxin A (tcdA), toxin B (tcdB), binary toxin (cdtA, cdtB), and tcdC genes in Vhembe District, South Africa. Am. J. Trop. Med. Hyg. 78, 577585.

    • Search Google Scholar
    • Export Citation
  • Shoaei, P., Shojaei, H., Khorvash, F., Hosseini, S. M., Ataei, B., Tavakoli, H., Jalali, M. and Weese, J. S. (2019): Molecular epidemiology of Clostridium difficile infection in Iranian hospitals. Antimicrob. Resist. Infect. Control 8, 12.

    • Search Google Scholar
    • Export Citation
  • Songer, J. G. (2004): The emergence of Clostridium difficile as a pathogen of food animals. Anim. Health Res. Rev. 5, 321326.

  • Songer, J. G. and Anderson, M. A. (2006): Clostridium difficile: an important pathogen of food animals. Anaerobe 12, 14.

  • Stare, B. G., Delmee, M. and Rupnik, M. (2007): Variant forms of the binary toxin CDT locus and tcdC gene in Clostridium difficile strains. J. Med. Microbiol. 56, 329335.

    • Search Google Scholar
    • Export Citation
  • Varshney, J. B., Very, K. J., Williams, J. L., Hegarty, J. P., Stewart, D. B., Lumadue, J., Venkitanarayanan, K. and Jayarao, B. M. (2014): Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog. Dis. 11, 822829.

    • Search Google Scholar
    • Export Citation
  • Weese, J. S., Reid-Smith, R. J., Avery, B. P. and Rousseau, J. (2010): Detection and characterization of Clostridium difficile in retail chicken. Lett. Appl. Microbiol. 50, 362365.

    • Search Google Scholar
    • Export Citation
  • Wolff, D., Bruning, T. and Gerritzen, A. (2009): Rapid detection of the Clostridium difficile ribotype 027 tcdC gene frame shift mutation at position 117 by real-time PCR and melt curve analysis. Eur. J. Clin. Microbiol. Infect. Dis. 28, 959962.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 6 7
Jul 2020 12 5 7
Aug 2020 11 5 6
Sep 2020 21 0 0
Oct 2020 12 0 0
Nov 2020 11 2 1
Dec 2020 0 0 0