The pharmacokinetics of levofloxacin (4 mg/kg), administered both alone and in combination with tolfenamic acid (2 mg/kg) and flunixin meglumine (2.2 mg/kg), was established after intravenous administration in sheep. Plasma levofloxacin concentrations were assayed by high-performance liquid chromatography and analysed according to the two-compartment open model. Following the administration of levofloxacin alone, the mean distribution half-life, elimination half-life, total clearance, volume of distribution at steady state and area under the plasma concentration–time curve were 0.20 h, 1.82 h, 0.39 L/h/kg, 0.96 L/kg and 10.40 h × µg/mL, respectively. Tolfenamic acid and flunixin meglumine caused a slow elimination and increased plasma concentrations of levofloxacin in combination administration. Levofloxacin, with an alteration in the dosage regimen, can be used effectively with tolfenamic acid and flunixin meglumine for the therapy of infections and inflammatory conditions in sheep.
Abo El-Sooud, K. and Al-Anati, L. (2011): Effect of flunixin on the disposition of enrofloxacin in calves. Insight Vet. Res. 1, 1–4.
Aminimanizani, A., Beringer, P. and Jelliffe, R. (2001): Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin. Pharmacokinet. 40, 169–187.
Bakken, J. S. (2004): The fluoroquinolones: how long will their utility last? Scand. J. Infect. Dis. 36, 85–92.
Bell, S. R. (2008): Respiratory disease in sheep 1. Differential diagnosis and epidemiology. In Practice 30, 200–207.
Corum, O., Corum, D. D., Er, A., Yildiz, R. and Uney, K. (2018): Pharmacokinetics and bioavailability of tolfenamic acid in sheep. J. Vet. Pharmacol. Therapeut. 41, 871–877.
CVMP (1997): https://www.ema.europa.eu/en/documents/mrl-report/tolfenamic-acid-summary-report-committee-veterinary-medicinal-products_en.pdf. Accessed 25 June 2019.
CVMP (1999): https://www.ema.europa.eu/en/documents/mrl-report/flunixin-summary-report-1-committee-veterinary-medicinal-products_en.pdf. Accessed 25 June 2019.
Czyrski, A. and Szałek, E. (2016): An HPLC method for levofloxacin determination and its application in biomedical analysis. J. Anal. Chem. 71, 840–843.
Czyrski, A., Kondys, K., Szałek, E., Karbownik, A. and Grześkowiak, E. (2015): The pharmacokinetic interaction between levofloxacin and sunitinib. Pharmacol. Rep. 67, 542–544.
Davis, R. and Bryson, H. M. (1994): Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 47, 677–700.
Deleforge, J., Thomas, E., Davot, J. L. and Boisrame, B. (1994): A field evaluation of the efficacy of tolfenamic acid and oxytetracycline in the treatment of bovine respiratory disease. J. Vet. Pharmacol. Therapeut. 17, 43–47.
Goudah, A. (2009): Pharmacokinetics of levofloxacin in male camels (Camelus dromedarius). J. Vet. Pharmacol. Therapeut. 32, 296–299.
Goudah, A. and Hasabelnaby, S. (2010): Disposition kinetics of levofloxacin in sheep after intravenous and intramuscular administration. Vet. Med. Int. 2010, 727231.
Hemeryck, A., Mamidi, R. N., Bottacini, M., Macpherson, D., Kao, M. and Kelley, M. F. (2006): Pharmacokinetics, metabolism, excretion and plasma protein binding of 14C-levofloxacin after a single oral administration in the Rhesus monkey. Xenobiotica 36, 597–613.
Hörl, W. H. (2010): Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals (Basel) 3, 2291–2321.
Hurst, M., Lamb, H. M., Scott, L. J. and Figgitt, D. P. (2002): Levofloxacin: an updated review of its use in the treatment of bacterial infections. Drugs 62, 2127–2167.
Khamdang, S., Takeda, M., Noshiro, R., Narikawa, S., Enomoto, A., Anzai, N., Piyachaturawat, P. and Endou, H. (2002): Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Therapeut. 303, 534–539.
Marshall, S. A. and Jones, R. N. (1993): In vitro activity of DU-6859a, a new fluorocyclopropyl quinolone. Antimicrob. Agents Chemother. 37, 2747–2753.
Martinez, M., McDermott, P. and Walker, R. (2006): Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals. Vet. J. 172, 10–28.
Myers, L. L., Firehammer, B. D., Shoop, D. S. and Border, M. M. (1984): Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect. Immun. 44, 241–244.
Neuman, M. (1987): Comparative pharmacokinetic parameters of new systemic fluoroquinolones: a review. Chemioterapia 6, 105–112.
Nightingale, C. H., Grant, E. M. and Quintiliani, R. (2000): Pharmacodynamics and pharmacokinetics of levofloxacin. Chemotherapy 46, 6–14.
Norrby, S. R. (1999): Levofloxacin. Expert Opin. Pharmacother. 1, 109–119.
North, D. S., Fish, D. N. and Redington, J. J. (1998): Levofloxacin, a second-generation fluoroquinolone. Pharmacotherapy 18, 915–935.
Odenholt, I. and Cars, O. (2006): Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model. J. Antimicrob. Chemother. 58, 960–965.
Ogino, T. and Arai, T. (2007): Pharmacokinetic interactions of flunixin meglumine and enrofloxacin in ICR mice. Exp. Anim. 56, 79–84.
Ogino, T., Mizuno, Y., Ogata, T. and Takahashi, Y. (2005): Pharmacokinetic interactions of flunixin meglumine and enrofloxacin in dogs. Am. J. Vet. Res. 66, 1209–1213.
Oh, Y. H. and Han, H.,K. (2006): Pharmacokinetic interaction of tetracycline with non-steroidal anti-inflammatory drugs via organic anion transporters in rats. Pharmacol. Res. 53, 75–79.
Pallo-Zimmerman, L. M., Byron, J. K. and Graves, T. K. (2010): Fluoroquinolones: then and now. Compend. Contin. Educ. Vet. 32, 1–9.
Patel, U. D., Patel, H. J., Bhavsar, S. K. and Thaker, A. M. (2012): Pharmacokinetics of levofloxacin following intravenous and subcutaneous administration in sheep. Asian J. Anim. Vet. Adv. 7, 85–93.
Rana, M. P., Sadariya, K. A. and Thaker, A. M. (2015): Effect of tolfenamic acid co-administration on pharmacokinetics of cefquinome following intramuscular administration in sheep. Vet. Arh. 85, 283–292.
Sheikh, M. A., Khanum, S., Ahmad, A., Iqbal, T., Hydair, Z. and Shakeela, N. (2001): Study of protein binding of levofloxacin in human beings. J. Med. Sci. 1, 87–90.
Welsh, E. M., McKellar, Q. A. and Nolan, A. M. (1993): The pharmacokinetics of flunixin meglumine in the sheep. J. Vet. Pharmacol. Therapeut. 16, 181–188.
WHO (1998): Use of quinolones in food animals and potential impact on human health. https://www.who.int/foodsafety/publications/quinolones/en/. Accessed 28 June 2019.
Yamaoka, K., Nakagawa, T. and Uno, T. (1978): Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6, 165–175.
Yano, I., Ito, T., Takano, M. and Inui, K. (1997): Evaluation of renal tubular secretion and reabsorption of levofloxacin in rats. Pharm. Res. 14, 508–511.
Yildiz, R., Corum, O., Atik, O., Corum, D. D., Altan, F., Ok, M. and Uney, K. (2019): Changes in novel gastrointestinal and renal injury markers in the blood plasma of sheep following increasing intravenous doses of tolfenamic acid. Acta Vet. Hung. 67, 87–97.
Zhanel, G. G. and Noreddin, A. M. (2001): Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr. Opin. Pharmacol. 1, 459–463.