View More View Less
  • 1 Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Valencia, , Spain
  • | 2 Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Messina, , Italy
  • | 3 Department of Veterinary Sciences, Physiopathology and Clinic of Reproduction Unit, Messina University, Messina, , Italy
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Abstract

The aim of the study was to assess the physiological reference values for systemic and intrafollicular placental growth factor (PlGF) concentrations in different categories of follicular sizes in cycling mares, according to progesterone (P4) and oestradiol (E2) patterns. Sixty ovaries were taken after slaughter from 30 clinically healthy mares. Regarding their size, the follicles were classified into three different categories, i.e. small (20–30 mm), medium-sized (31–40 mm) and large (≥41 mm), and follicular fluid (FF) was sampled from each single follicle. Intrafollicular PlGF concentrations were significantly increased in larger and medium-sized follicles compared to small follicles, and their values were 1.48 and 1.36 times higher than the systemic values, respectively. On the other hand, systemic PlGF concentrations were 1.3 times higher than those in the FF of follicles of small size. Intrafollicular P4 concentrations were significantly higher in larger follicles than in small ones, and their concentrations were 6.74 and 3.42 times higher than the systemic values, respectively. Intrafollicular E2 concentrations were significantly higher in large and medium-sized follicles than in follicles of small size, and their concentrations were 21.1, 15.4 and 8.35 times higher than the systemic values, respectively. Intrafollicular and systemic PlGF concentrations were strongly and positively correlated; nevertheless, no correlations between intrafollicular and systemic steroid hormones, PlGF and follicle diameters, PlGF and E2, or PlGF and P4 were observed. This represents the first study to characterise systemic and intrafollicular PlGF concentrations in cycling normal mares, providing evidence that the bioavailability of this factor in follicles of medium and large sizes was higher than in small follicles, independently of steroid hormone concentrations. Further studies are needed to assess the presumable implications of PlGF in follicular angiogenesis in mares, similar to those already observed in women and primates.

  • Acosta, T. J. and Miyamoto, A. (2004): Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Anim. Reprod. Sci. 82, 127140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Zi’abi, M. O., Watson, E. D. and Fraser, H. M. (2003): Angiogenesis and vascular endothelial growth factor expression in the equine corpus luteum. Reproduction 125, 259270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Araújo, V. R., Duarte, A. B. G. and Bruno, J. B. (2013): Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals. Zygote 21, 295304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artini, P. G., Monti, M., Matteucci, C., Valentino, V., Cristello, F. and Genazzani, A. R. (2006): Vascular endothelial growth factor and basic fibroblast growth factor in polycystic ovary syndrome during controlled ovarian hyperstimulation. Gynecol. Endocrinol. 22, 465470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artini, P. G., Ruggiero, M., Parisen Toldin, M. R., Monteleone, P., Monti, M., Cela, V. and Genazzani, A. R. (2009): Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Hum. Fertil. (Camb). 12, 12401244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashir, S. T., Ishak, G. M., Gastal, M. O., Roser, J. F. and Gastal, E. L. (2016): Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology 85, 14911498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, H. R., Trau, H. A. and Duffy, D. M. (2018): Placental Growth Factor is required for ovulation, luteinization, and angiogenesis in primate ovulatory follicles. Endocrinology 159, 710722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bridges, T. S., Davidson, T. R., Chamberlain, C. S., Geisert, R. D. and Spicer, L. J. (2002): Changes in follicular fluid steroids, insulin-like growth factors (IGF) and IGF-binding protein concentration, and proteolytic activity during equine follicular development. J. Anim. Sci. 80, 179190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., Wu, Y., Bono, F., Devy, L., Beck, H., Scholz, D., Acker, T., DiPalma, T., Dewerchin, M., Noel, A., Stalmans, I., Barra, A., Blacher, S., VandenDriessche, T., Ponten, A., Eriksson, U., Plate, K. H., Foidart, J. M., Schaper, W., Charnock-Jones, D. S., Hicklin, D. J., Herbert, J. M., Collen, D. and Persico, M. G. (2001): Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Falco, S. (2012). The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 44, 19.

  • Ferreira-Dias, G., Bravo, P. P., Mateus, L., Redmer, D. A. and Medeiros, J. A. (2006): Microvascularization and angiogenic activity of equine corpora lutea throughout the estrous cycle. Domest. Anim. Endocrinol. 30, 247259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foss, R., Ortis, H. and Hinrichs, K. (2013): Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet. J. 45, 3943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser, H. M. (2006): Regulation of the ovarian follicular vasculature. Reprod. Biol. Endocrinol. 4, 18.

  • Gastal, E. L., Gastal, M. O., Wiltbank, M. C. and Ginther, O. J. (1999): Follicle deviation and intrafollicular and systemic estradiol concentrations in mares. Biol. Reprod. 61, 3139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginther, O. J., Gastal, E. L., Gastal, M. O., Bergfelt, D. R., Baerwald, A. R. and Pierson, R. A. (2004a): Comparative study of the dynamics of follicular waves in mares and women. Biol. Reprod. 71, 11951201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginther, O. J., Gastal, E. L., Gastal, M. O. and Beg, M.A. (2004b): Critical role of insulin-like growth factor system in follicle selection and dominance in mares. Biol. Reprod. 70, 13741379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginther, O. J., Gastal, E. L., Gastal, M. O., Siddiqui, M. A. and Beg, M. A. (2007): Relationships of follicle versus oocyte maturity to ultrasound morphology, blood flow, and hormone concentrations of the preovulatory follicle in mares. Biol. Reprod. 77, 202208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourvas, V., Dalpa, E., Konstantinidou, A., Vrachnis, N., Spandidos, D. A. and Sifakis, S. (2012): Angiogenic factors in placentas from pregnancies complicated by fetal growth restriction. Mol. Med. Repr. 6, 2327.

    • Search Google Scholar
    • Export Citation
  • Grazul-Bilska, A. T., Navanukraw, C., Johnson, M. L., Vonnahme, K. A., Ford, S. P., Reynolds, L. P. and Redmer, D. A. (2007): Vascularity and expression of angiogenic factors in bovine dominant follicles of the first follicular wave. J. Anim. Sci. 85, 19141922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, G., Barak, V., Maslovitz, S., Amit, A., Lessing, J. B. and Geva, E. (2008): Regulation of vascular endothelial growth factor-A and its soluble receptor sFlt-1 by luteinizing hormone in vivo: implication for ovarian follicle angiogenesis. Fertil. Steril. 89, 922926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, K. G., Ushizawa, K., Hosoe, M. and Takahashi, T. (2010): Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod. Biol. Endocrinol. 8, 11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herr, D., Bekes, I. and Wulff, C. (2015): Regulation of endothelial permeability in the primate corpora lutea: implications for ovarian hyperstimulation syndrome. Reproduction 149, R71R79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinrichs, K. (2012): Assisted reproduction techniques in the horse. Reprod. Fertil. Dev. 25, 8093.

  • Hou, L., Taylor, R., Shu, Y., Johnston-MacAnanny, E. and Yalcinkaya, T. (2014): Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) directly correlate with ovarian follicle size in women undergoing in vitro fertilization (IVF). Fertil. Steril. 102 Suppl., e256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, M. G., Robinson, R. S., Mann, G. E. and Webb, R. (2004): Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim. Reprod. Sci. 82–83, 461477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobsson, L., Franco, C. A., Bentley, K., Collins, R. T., Ponsioen, B., Aspalter, I. M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S. and Gerhardt, H. (2010): Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFee, R. M., Rozell, T. G. and Cupp, A. S. (2012): The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development. Cell Tissue Res. 349, 635647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, K., Ellenberger, C. and Schoon, H. A. (2009): Histomorphological and immunohistochemical study of angiogenesis and angiogenic factors in the ovary of the mare. Res. Vet. Sci. 87, 421431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nejabati, H. R., Latifi, Z., Ghasemnejad, T., Fattahi, A. and Nouri, M. (2017): Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecol. Endocrinol. 33, 668674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satué, K., Fazio, E., Ferlazzo, A. and Medica, P. (2019): Intrafollicular and systemic serotonin, oestradiol and progesterone concentrations in cycling mares. Reprod. Domest. Anim. 54, 14111418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satué, K., Marcilla, M., Medica, P., Ferlazzo, A. and Fazio, E. (2018): Sequential concentrations of placental growth factor and haptoglobin, and their relation to oestrone sulphate and progesterone in pregnant Spanish Purebred mare. Theriogenology 115, 7783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soares, S. R., Gomez, R., Simon, C., Garcia-Velasco, J. A. and Pellicer, A. (2008): Targeting the vascular endothelial growth factor system to prevent ovarian hyperstimulation syndrome. Hum. Reprod. Update 14, 321333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzumori, N., Sugiura-Ogasawara, M., Katano, K. and Suzumori, K. (2003): Women with endometriosis have increased levels of placental growth factor in the peritoneal fluid compared with women with cystadenomas. Hum. Reprod. 18, 25952598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tal, R., Seifer, D. B., Grazi, R. V. and Malter, H. E. (2014): Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation. Reprod. Biol. Endocrinol. 12, 82.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trau, H. A., Brännström, M., Curry, T. E. J. Jr. and Duffy, D. M. (2016): Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum. Reprod. 31, 436444.

    • Search Google Scholar
    • Export Citation
  • Tsukada, T., Kojima, A. Y., Sato, K., Moriyoshi, M., Koyago, M. and Sawamukai, Y. (2008): Intrafollicular concentrations of steroid hormones and PGF2α in relation to follicular development in the mares during the breeding season. J. Equine Sci. 19, 3134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrachnis, N., Kalampokas, E., Sifakis, S., Vitoratos, N., Kalampokas, T., Botsis, D. and Iliodromiti, Z. (2013): Placental growth factor (PlGF): a key to optimizing fetal growth. J. Matern. Fetal Neonatal Med. 26, 9951002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, E. D. and Al-Zi'abi, M. O. (2002): Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. Reproduction 124, 227234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, E. D., Bae, S. E. and Armstrong, D. G. (2003): Molecular and functional characteristics of dominant follicles during spring transition in mares. Pferdeheilkunde 19, 613618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, E. D. and Hinrichs, K. (1988): Changes in the concentrations of steroids and prostaglandin F in preovulatory follicles of the mare after administration of hCG. J. Reprod. Fertil. 84, 557561.

    • Crossref
    • Search Google Scholar
    • Export Citation

Author information is available in PDF.
Please, download the file from HERE.

The manuscript preparation instructions is available in PDF.
Please, download the file from HERE.

Senior editors

Editor-in-Chief: Mária BENKŐ

Managing Editor: András SZÉKELY

Editorial Board

  • Béla DÉNES (National Food Chain Safety Office, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (National Agricultural Innovation Centre, Herceghalom, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 467 4081 (ed.-in-chief) or (36 1) 213 9793 (editor) Fax: (36 1) 467 4076 (ed.-in-chief) or (36 1) 213 9793

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2020  
Total Cites 987
WoS
Journal
Impact Factor
0,955
Rank by Veterinary Sciences 101/146 (Q3)
Impact Factor  
Impact Factor 0,920
without
Journal Self Cites
5 Year 1,164
Impact Factor
Journal  0,57
Citation Indicator  
Rank by Journal  Veterinary Sciences 93/166 (Q3)
Citation Indicator   
Citable 49
Items
Total 49
Articles
Total 0
Reviews
Scimago 33
H-index
Scimago 0,395
Journal Rank
Scimago Veterinary (miscellaneous) Q2
Quartile Score  
Scopus 355/217=1,6
Scite Score  
Scopus General Veterinary 73/183 (Q2)
Scite Score Rank  
Scopus 0,565
SNIP  
Days from  145
submission  
to acceptance  
Days from  150
acceptance  
to publication  
Acceptance 19%
Rate

 

2019  
Total Cites
WoS
798
Impact Factor 0,991
Impact Factor
without
Journal Self Cites
0,897
5 Year
Impact Factor
1,092
Immediacy
Index
0,119
Citable
Items
59
Total
Articles
59
Total
Reviews
0
Cited
Half-Life
9,1
Citing
Half-Life
9,2
Eigenfactor
Score
0,00080
Article Influence
Score
0,253
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,09791
Average
IF
Percentile
42,606
Scimago
H-index
32
Scimago
Journal Rank
0,372
Scopus
Scite Score
335/213=1,6
Scopus
Scite Score Rank
General Veterinary 62/178 (Q2)
Scopus
SNIP
0,634
Acceptance
Rate
18%

 

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 696 EUR / 872 USD
Print + online subscription: 804 EUR / 1004 USD
Subscription fee 2022 Online subsscription: 710 EUR / 892 USD
Print + online subscription: 824 EUR / 1028 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Publication
Programme
2020 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 50 0 0
Jul 2021 46 0 0
Aug 2021 34 2 2
Sep 2021 24 0 0
Oct 2021 31 0 0
Nov 2021 10 0 0
Dec 2021 2 0 0