Newcastle disease virus (NDV) remains a constant threat to the poultry industry even with intensive vaccination programmes. In the present study, 40 samples were collected from farms showing high mortalities in some Egyptian governorates between 2016 and 2018. Tracheal samples were collected for virus isolation and confirmed by real-time RT-PCR. Molecular characterisation was performed by sequencing, followed by phylogenetic analysis of the novel sequences. Histopathological and immunohistochemical examinations were performed on different organs from NDV-infected broilers. The phylogenetic analysis revealed that the NDV isolates from different areas of Egypt were genetically closely related and all belonged to genotype VII. The histopathological hallmarks included haemorrhagic tracheitis, interstitial pneumonia with syncytia formation, haemorrhagic proventriculitis, necrotising pancreatitis, pan-lymphoid depletion, non-suppurative encephalitis and nephritis. Immunological detection of NDV antigen clarified the widespread presence of viral antigen in different organs with severe lesions. The present study confirmed that a virulent NDV of genotype VII became the predominant strain, causing severe outbreaks in poultry farms in Egypt. The presence of viral antigen in different organs indicates the pantropic nature of the virus. Immunohistochemistry was a very useful diagnostic tool for the detection of NDV antigen.
Abdel-Glil, M. Y., Mor, S. K., Sharafeldin, T. A., Porter, R. E. and Goyal, S. M. (2014): Detection and characterization of Newcastle disease virus in formalin-fixed, paraffin-embedded tissues from commercial broilers in Egypt. Avian Dis. 58, 118–123.
Alexander, D. J. (2003): Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. In: Saif, J. M., Barnes, H. J., Glisson, J. R., Fadly, A. M., McDougald, L. R. and Swayne, D. E. (eds.) Diseases of Poultry, 11th ed. Ames, Iowa. pp. 63–99.
Bergfeld, J., Meers, J., Bingham, J., Harper, J., Payne, J., Lowther, S., Marsh, G., Tachedjian, M. and Middleton, D. (2017): An Australian Newcastle disease virus with a virulent fusion protein cleavage site produces minimal pathogenicity in chickens. Vet. Pathol. 54, 649–660.
Brown, V. R. and Bevins, S. N. (2017): A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. BMC Vet. Res. 48, 1–15.
Burns, R. (ed.) (2005): Immunochemical Protocols, Vol. 295. Humana Press, Totowa, NJ.
Chaka, H., Goutard, F., Gil, P., Abolnik, C., de Almeida, R. S., Bisschop, S. and Thompson, P. N. (2013): Serological and molecular investigation of Newcastle disease in household chicken flocks and associated markets in Eastern Shewa zone, Ethiopia. Trop. Anim. Health Prod. 45, 705–714.
Dombrowski, S. M., Deshpande, A., Dingwall, C., Leichliter, A., Leibson, Z. and Luciano, M. G. (2008): Chronic hydrocephalus-induced hypoxia: increased expression of VEGFR-2+ and blood vessel density in hippocampus. Neuroscience 152, 346–359.
Dortmans, J. C., Koch, G., Rottier, P. J. and Peeters, B. P. (2011): Virulence of Newcastle disease virus: what is known so far?. Vet. Res. 42, 1–11.
Ezema, W. S., Eze, D. C., Shoyinka, S. V. O. and Okoye, J. O. A. (2016): Atrophy of the lymphoid organs and suppression of antibody response caused by velogenic Newcastle disease virus infection in chickens. Trop. Anim. Health Prod. 48, 1703–1709.
Galindo-Muniz, F., Calderon, N. L., Charles, M. N., Tellez, I. G. and Fortoul, T. I. (2001): Haematological and histological findings in experimental Newcastle disease. Acta Vet. Brno 70, 185–189.
Haque, M., Hossain, M., Islam, M., Zinnah, M., Khan, M. and Islam, M. (2010): Isolation and detection of Newcastle disease virus from field outbreaks in broiler and layer chickens by reverse transcription–polymerase chain reaction. Bangl. J. Vet. Med. 8, 87–92.
Harrison, L., Brown, C., Afonso, C., Zhang, J. and Susta, L. (2011): Early occurrence of apoptosis in lymphoid tissues from chickens infected with strains of Newcastle disease virus of varying virulence. J. Comp. Pathol. 145, 327–335.
Hassan, M. K., Afify, M. A., and Aly, M. M. (2004): Genetic resistance of Egyptian chickens to infectious bursal disease and Newcastle disease. Trop. Anim. Health Prod. 36, 1–9.
Julian, R. J. (1996): Cardiovascular system. In: Ridell, C. (ed.) Avian Histopathology. American Association of Avian Pathologists, Pennsylvania. pp. 69–88.
Kommers, G. D., King, J., Seal, B. S., Carmichael, K. P. and Brown, C. C. (2002): Pathogenesis of six pigeon-origin isolates of Newcastle disease virus for domestic chickens. Vet. Pathol. 39, 353–362.
Manzoor, A. W., Rizvi, F., Javed, M., Numan, M., Khan, A. and Rehman, S. U. (2013): Pathotyping of Newcastle disease virus using multiplex reverse transcription polymerase chain reaction and pathological studies in naturally infected broiler chicks. Pak. J. Life Soc. Sci. 11, 225–232.
Mohamed, M. H. A., Kumar, S., Paldurai, A., Megahed, M. M., Ghanem, I. A., Lebdah, M. A. and Samal, S. K. (2009): Complete genome sequence of a virulent Newcastle disease virus isolated from an outbreak in chickens in Egypt. Virus Gene. 39, 234–237.
Nabila, O., Sultan, S., Ahmed, A. I., Ibrahim, R. S. and Sabra, M. (2014): Isolation and pathotyping of Newcastle disease viruses from field outbreaks among chickens in the southern part of Egypt 2011–2012. Glob. Vet. 12, 237–243.
Nakamura, K., Yamada, M., Yamaguchi, S., Mase, M., Narita, M., Ohyama, T. and Yamada, M. (2001): Proliferation of lung macrophages in acute fatal viral infections in chickens. Avian Dis. 45, 813–818.
OIE (2012): Newcastle disease (infection with Newcastle disease virus). In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals: (Mammals, Birds and Bees), Vol. 1. pp. 555–574.
Radwan, M. M., Darwish, S. F., El-Sabagh, I. M., El-Sanousi, A. A. and Shalaby, M. A. (2013): Isolation and molecular characterization of Newcastle disease virus genotypes II and VIId in Egypt between 2011 and 2012. Virus Gene. 47, 311–316.
Saitou, N. and Nei, M. (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Samiullah, M., Rizvi, F., Anjum, A. D. and Shah, M. F. A. (2006): Rising hyperimmune serum against avian paramyxovirus (APMV-1) and pigeon paramyxovirus (PPMV-1) in rabbits and their cross-reactivity. Pak. J. Biol. Sci. 9, 2184–2186.
Sun, Q., Wang, D., She, R., Li, W., Liu, S., Han, D., Wang, Y. and Ding, Y. (2008): Increased mast cell density during the infection with velogenic Newcastle disease virus in chickens. Avian Pathol. 37, 579–585.
Susta, L., Miller, P. J., Afonso, C. L. and Brown, C. C. (2011): Clinicopathological characterization in poultry of three strains of Newcastle disease virus isolated from recent outbreaks. Vet. Pathol. 48, 349–360.
Suvarna, S. K., Layton, C. and Bancroft, J. D. (2013): The hematoxylins and eosin. In: Suvarna, S. K., Layton, C. and Bancroft, J. D. (eds) Bancroft's Theory and Practice of Histological Techniques, 7th ed. Churchill Livingstone, London, UK. pp. 172–186.
Wang, X., Zhou, Q., Shen, J., Yao, J. and Yang, X. (2015): Effect of difference doses of Newcastle disease vaccine immunization on growth performance, plasma variables and immune response of broilers. J. Anim. Sci. Biotechnol. 6, 20.
Wise, M. G., Suarez, D. L., Seal, B. S., Pedersen, J. C., Senne, D. A., King, D. J., Kapczynski, D. R. and Spackman, E. (2004): Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 42, 329–338.