Authors:
Zhao Namula Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

Search for other papers by Zhao Namula in
Current site
Google Scholar
PubMed
Close
,
Yoko Sato School of Biological Science, Tokai University, Sapporo, Hokkaido 005-8601, Japan

Search for other papers by Yoko Sato in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1683-8505
,
Manita Wittayarat Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand

Search for other papers by Manita Wittayarat in
Current site
Google Scholar
PubMed
Close
,
Quynh Anh Le Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

Search for other papers by Quynh Anh Le in
Current site
Google Scholar
PubMed
Close
,
Nhien Thi Nguyen Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

Search for other papers by Nhien Thi Nguyen in
Current site
Google Scholar
PubMed
Close
,
Qingyi Lin Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China

Search for other papers by Qingyi Lin in
Current site
Google Scholar
PubMed
Close
,
Maki Hirata Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

Search for other papers by Maki Hirata in
Current site
Google Scholar
PubMed
Close
,
Fuminori Tanihara Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

Search for other papers by Fuminori Tanihara in
Current site
Google Scholar
PubMed
Close
, and
Takeshige Otoi Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan

Search for other papers by Takeshige Otoi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study was conducted to determine the effects of supplementing the maturation medium with the antioxidant curcumin on the in vitro maturation (IVM), fertilisation and development of porcine oocytes. Curcumin supplementation was performed at concentrations of 0, 5, 10, 20, and 40 µM. At concentrations of 5–20 µM, curcumin had significant positive effects (P < 0.05) on maturation and fertilisation rates compared to the non-treated group. Of the groups cultured with 5–20 µM curcumin, the number of oocytes with DNA-fragmented nuclei after IVM was significantly lower than in groups matured without curcumin. Moreover, curcumin supplementation at 10 µM also gave a significantly higher rate of blastocyst formation compared with oocytes matured without curcumin. Increasing the curcumin concentration to 40 µM yielded negative effects on fertilisation and embryonic development compared with the groups treated with lower concentrations of curcumin. Supplementation with 10 µM curcumin had beneficial effects on the oocyte maturation rate and DNA fragmentation index compared to the non-treated group both in the presence and absence of hydrogen peroxide. These results indicate that curcumin supplementation at a suitable concentration (10 µM) is potentially useful for porcine oocyte culture systems, in terms of protecting oocytes from various forms of oxidative stress.

  • Agarwal, A. and Majzoub, A. (2017): Role of antioxidants in assisted reproductive techniques. World J. Mens Health 35, 7793.

  • Aitken, R., Harkiss, D. and Buckingham, D. (1993): Relationship between iron-catalysed lipid peroxidation potential and human sperm function. Reproduction 98, 257265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ankrah, N.-A. and Appiah-Opong, R. (1999): Toxicity of low levels of methylglyoxal: depletion of blood glutathione and adverse effect on glucose tolerance in mice. Toxicol. Lett. 109, 6167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borole, V., Dhumale, D. and Rajput, J. (2000): Embryo culture studies in interspecific crosses between arboreum and hirsutum cotton. Indian J. Genet. Pl. Br. 60, 105110.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., Zuo, X., Li, H., Hong, R., Ding, B., Liu, C., Gao, D., Shang, H., Cao, Z., Huang, W., Zhang, X. and Zhang, Y. (2017): Effects of melatonin on maturation, histone acetylation, autophagy of porcine oocytes and subsequent embryonic development. Anim. Sci. J. 88, 12981310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comporti, M. (1989): Three models of free radical-induced cell injury. Chem. Biol. Interact. 72, 156.

  • de Lamirande, E., Jiang, H., Zini, A., Kodama, H. and Gagnon, C. (1997): Reactive oxygen species and sperm physiology. Rev. Reprod. 2, 4854.

  • de Matos, D. G., Furnus, C. C. and Moses, D. F. (1997): Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol. Reprod. 57, 14201425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dekhuijzen, P., Aben, K., Dekker, I., Aarts, L., Wielders, P., Van Herwaarden, C. and Bast, A. (1996): Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Res. Crit. Care 154, 813816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Do, L. T., Luu, V. V., Morita, Y., Taniguchi, M., Nii, M., Peter, A. T. and Otoi, T. (2015): Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes. Reprod. Biol. 15, 8693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, C. J. and Callingham, B. A. (1978): Substrate-selective activation of rat liver mitochondrial mono amine oxidase by oxygen. Biochem. Pharmacol. 27, 19952000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerin, P., El Mouatassim, S. and Menezo, Y. (2001): Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, B. (2014): Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed. J. 37, 99.

  • Hsuuw, Y. D., Chang, C. K., Chan, W. H. and Yu, J. S. (2005): Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J. Cell. Physiol. 205, 379386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaprakasha, G., Rao, L. J. and Sakariah, K. (2006): Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98, 720724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, M. C., Yang-Yen, H. F., Yen, J. J. Y. and Lin, J. K. (1996): Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr. Cancer 26, 111120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, J. H. (2003): Oxidative damage of DNA induced by methylglyoxal in vitro. Toxicol. Lett. 145, 181187.

  • Kang, J. T., Moon, J. H., Choi, J. Y., Park, S. J., Kim, S. J., Saadeldin, I. M. and Lee, B. C. (2016): Effect of antioxidant flavonoids (quercetin and taxifolin) on in vitro maturation of porcine oocytes. Asian-Australas. J. Anim. Sci. 29, 352358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwak, S. S., Cheong, S. A., Jeon, Y., Lee, E., Choi, K. C., Jeung, E. B. and Hyun, S. H. (2012): The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 86101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastroianni, L. and Jones, R. (1965): Oxygen tension within the rabbit fallopian tube. Reproduction 9, 99102.

  • Menon, V. P. and Sudheer, A. R. (2007): Antioxidant and anti-inflammatory properties of curcumin. In: Aggarwal, B. B., Sur, Y.-J. and Shishodia, Sh. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Springer, Boston. pp. 105125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namula, Z., Sato, Y., Kodama, R., Morinaga, K., Luu, V. V., Taniguchi, M., Nakai, M., Tanihara, F., Kikuchi, K., Nagai, T. and Otoi, T. (2013): Motility and fertility of boar semen after liquid preservation at 5 degrees C for more than 2 weeks. Anim. Sci. J. 84, 600606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. V., Tanihara, F., Do, L., Sato, Y., Taniguchi, M., Takagi, M., Van Nguyen, T. and Otoi, T. (2017): Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reprod. Domest. Anim. 52, 969975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otoi, T., Yamamoto, K., Horikita, N., Tachikawa, S. and Suzuki, T. (1999): Relationship between dead cells and DNA fragmentation in bovine embryos produced in vitro and stored at 4 degrees C. Mol. Reprod. Dev. 54, 342347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tareq, K. M., Akter, Q. S., Khandoker, M. A. and Tsujii, H. (2012): Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev. 58, 621628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatemoto, H., Ootaki, K., Shigeta, K. and Muto, N. (2001): Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation. Biol. Reprod. 65, 18001806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatemoto, H., Sakurai, N. and Muto, N. (2000): Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, N., Wang, G., Hao, J., Ma, J., Wang, Y., Jiang, X. and Jiang, H. (2012): Curcumin ameliorates hydrogen peroxide-induced epithelial barrier disruption by upregulating heme oxygenase-1 expression in human intestinal epithelial cells. Digest. Dis. Sci. 57, 17921801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, B. D. and Knight, J. W. (2010): Effects of N-acetyl-cysteine and N-acetyl-cysteine-amide supplementation on in vitro matured porcine oocytes. Reprod. Domest. Anim. 45, 755759.

    • Search Google Scholar
    • Export Citation
  • Wu, J.-Y., Lin, C.-Y., Lin, T.-W., Ken, C.-F. and Wen, Y.-D. (2007): Curcumin affects development of zebrafish embryo. Biol. Pharm. Bull. 30, 13361339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, M. (1993): Role of glutathione in the maturation and fertilization of pig oocytes in vitro. Mol. Reprod. Dev. 35, 7681.

  • Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M. and Pursel, V. G. (1993): Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 8994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X.-C., Zhang, L., Yu, H.-X., Sun, Z., Lin, X.-F., Tan, C. and Lu, R.-R. (2011): Curcumin protects mouse neuroblastoma Neuro-2A cells against hydrogen-peroxide-induced oxidative stress. Food Chem. 129, 387394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ferenc BASKA

Editorial assistant: Szilvia PÁLINKÁS

 

Editorial Board

  • Mária BENKŐ (Acta Veterinaria Hungarica, Budapest, Hungary)
  • Gábor BODÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Béla DÉNES (University of Veterinary Medicine, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (University of Veterinary Medicine, Budapest, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • János GÁL (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Dušan PALIĆ (Ludwig Maximilian University, Munich, Germany)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA

University of Veterinary Medicine,

H-1078 Budapest, István utca 2., Hungary

Phone: (36 20) 560 4183 (ed.-in-chief) or (36 1) 478 4100/8430 (editor)

E-mail: acta.veterinaria@univet.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.272
SJR Q rank Q2

2023  
Web of Science  
Journal Impact Factor 0.7
Rank by Impact Factor Q3 (Veterinary Sciences)
Journal Citation Indicator 0.4
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Veterinary)
SNIP 0.39
Scimago  
SJR index 0.258
SJR Q rank Q3

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 832 EUR / 916 USD
Print + online subscription: 960 EUR / 1054 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 134 1 1
Dec 2024 65 0 0
Jan 2025 91 0 0
Feb 2025 168 0 0
Mar 2025 102 1 0
Apr 2025 30 0 0
May 2025 0 0 0