Despite the use of wide-scale vaccination programmes against the H9N2 virus, enzootic outbreaks of H9N2 avian influenza (AI) have often occurred and caused serious nationwide economic losses, particularly in broiler chickens. In this study, the haemagglutinin (HA) and neuraminidase (NA) genes of nine recent H9N2s and a common vaccine strain were fully sequenced and compared with other representative Iranian viruses. Phylogenetic analysis revealed that all Iranian viruses were grouped into the G1 sub-lineage with different clusters in which recent isolates (2014–2017) formed a distinct cluster compared to the vaccine group (1998–2004). All Iranian H9N2s exhibited low pathogenicity AI connecting peptide feature with an R/KSSR motif. Amino acid 226, located in the 220 loop of the receptor binding site, was leucine among the recent Iranian viruses, a characteristic of human influenza viruses. With an overall gradual increase in the genetic diversity of H9N2s, Bayesian skyline plots of Iranian HA and NA genes depicted a fluctuation and a relative stable situation, respectively. It is recommended to apply constant surveillance to assess any increase in viral human adaptation and evolutionary changes in circulating field H9N2s. Moreover, antigenic characterisation of the prevailing H9N2 viruses seems to be necessary for evaluating the possible antigenic drift from the vaccine strain.
Alexander, D. J. (2007): An overview of the epidemiology of avian influenza. Vaccine 25, 5637–5644.
Bahari, P., Pourbakhsh, S. A., Shoushtari, H. and Bahmaninejad, M. A. (2015): Molecular characterization of H9N2 avian influenza viruses isolated from vaccinated broiler chickens in northeast Iran. Trop. Anim. Health Prod. 47, 1195–1201.
Bashashati, M., Vasfi Marandi, M. and Sabouri. F. (2013): Genetic diversity of early (1998) and recent (2010) avian influenza H9N2 virus strains isolated from poultry in Iran. Arch. Virol. 158, 2089–2100.
Boni, M. F., Posada, D. and Feldman, M. W. (2007): An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176, 1035–1047.
Butt, A. M., Siddique, S., Idrees, M. and Tong, Y. (2010): Avian influenza A (H9N2): computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virol. J. 7, 319.
Fusaro, A., Monne, I., Salviato, A., Valastro, V., Schivo, A., Amarin, N. M., Gonzalez, C., Ismail, M. M., Al-Ankari, A. R., Al-Blowi, M. H., Khan, O. A., Maken Ali, A. S., Hedayati, A., Garcia Garcia, J., Ziay, G. M., Shoushtari, A., Al Qahtani, K. N., Capua, I., Holmes, E. C. and Cattoli, G. (2011): Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J. Virol. 85, 8413–8421.
Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. (2000): Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582.
Guan, Y., Shortridge, K. F., Krauss, S. and Webster, R. G. (1999): Molecular characterization of H9N2 influenza viruses: were they the donors of the ‘internal’ genes of H5N1 viruses in Hong Kong? Proc. Natl. Acad. Sci. U.S.A. 96, 9363–9367.
Guo, Y., Li, J. and Cheng, X. (1999): Discovery of men infected by avian influenza A (H9N2) virus [in Chinese]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13, 105–108.
Hall, T. A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. and Perez, D. R (2001): Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146, 2275–2289.
Homme, P. J. and Easterday, B. C. (1970): Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis. 14, 66–74.
Kaverin, N. V., Rudneva, I. A., Ilyushina, N. A., Lipatov, A. S., Krauss, S. and Webster, R. G. (2004): Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J. Virol. 78, 240–249.
Kumar, S., Stecher, G. and Tamura, K. (2016): MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.
Lee, D. H., Fusaro, A., Song, C. S., Suarez, D. L. and Swayne, D. E. (2016): Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea. Virology 488, 225–231.
Martin, D. and Rybicki, E. (2000): RDP: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.
Martin, D. P., Murrell, B., Golden, M., Khoosal, A. and Muhire, B. (2015): RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003.
Matrosovich, M. N., Krauss, S. and Webster, R. G. (2001): H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281, 156–162.
Matrosovich, M., Stech, J. and Klenk, H. D. (2009): Influenza receptors, polymerase and host range. Rev. Sci. Tech. 28, 203–217.
Norouzian, H., Bashashati, M. and Vasfimarandi, M. (2014): Phylogenetic analysis of neuraminidase gene of H9N2 avian influenza viruses isolated from chicken in Iran during 2010–2011. Iran. J. Microbiol. 6, 91–97.
Obadan, A. O., Santos, J., Ferreri, L., Thompson, A. J., Carnaccini, S., Geiger, G., Gonzalez Reiche, A. S., Rajão, D. S., Paulson, J. C. and Perez, D. R. (2019): Flexibility in vitro of amino acid 226 in the receptor-binding site of an H9 subtype influenza A virus and its effect in vivo on virus replication, tropism, and transmission. J. Virol. 93, pii: e02011-18.
OIE (2019): Avian influenza (infection with avian influenza viruses). In: Manual of diagnostic tests and vaccines for terrestrial animals. Office International des Epizooties, Paris, France. pp. 821–843.
Padidam, M., Sawyer, S. and Fauquet, C. M. (1999): Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.
Park, K. J., Kwon, H. I., Song, M. S., Pascua, P. N., Baek, Y. H., Lee, J. H., Jang, H. L., Lim, J. Y., Mo, I. P., Moon, H. J., Kim, C. J. and Choi, Y. K. (2011): Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmes. J. Gen. Virol. 92, 36–50.
Peacock, T., Reddy, K., James, J., Adamiak, B., Barclay, W., Shelton, H. and Iqbal, M. (2016): Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci. Rep. 6, 18745.
Posada, D. and Crandall, K. A. (2001): Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc. Natl. Acad. Sci. U.S.A. 98, 13757–13762.
Pu, J., Wang, S., Yin, Y., Zhang, G., Carter, R. A., Wang, J., Xu, G., Sun, H., Wang, M., Wen, C., Wei, Y., Wang, D., Zhu, B., Lemmon, G., Jiao, Y., Duan, S., Wang, Q., Du, Q., Sun, M., Bao, J., Sun, Y., Zhao, J., Zhang, H., Wu, G., Liu, J. and Webster, R. G. (2015): Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc. Natl. Acad. Sci. U.S.A. 112, 548–553.
Qi, W., Zhou, X., Shi, W., Huang, L., Xia, W., Liu, D., Li, H., Chen, S., Lei, F., Cao, L., Wu, J., He, F., Song, W., Li, Q., Li, H., Liao, M. and Liu, M. (2014): Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China. Euro. Surveill. 19, 20841.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. and Suchard, M. A. (2018): Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904.
Saito, T., Lim, W., Suzuki, T., Suzuki, Y., Kida, H., Nishimura, S. I. and Tashiro, M. (2001): Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine 20,125–133.
Salminen, M. O., Carr, J. K., Burke, D. S. and McCutchan, F. E. (1995): Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res. Hum. Retrovir. 11, 1423–1425.
SJCEIRS Working Group (2013): Assessing the fitness of distinct clades of influenza A (H9N2) viruses. Emerg. Microb. Infect. 2, e75.
Smith, J. M. (1992): Analyzing the mosaic structure of genes. J. Mol. Evol. 34, 126–129.
Song, X. F., Han, P. and Chen, Y. P. (2011): Genetic variation of the hemagglutinin of avian influenza virus H9N2. J. Med. Virol. 83, 838–846.
Steinhauer, D. A. (1999): Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258, 1–20.
Suarez, D. L., Garcia, M., Latimer, J., Senne, D. and Perdue, M. (1999): Phylogenetic analysis of H7 avian influenza viruses isolated from the live bird markets of the Northeast United States. J. Virol. 73, 3567–3573.
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J. and Rambaut, A. (2018): Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016.
Uhlendorff, J., Matrosovich, T., Klenk, H. D. and Matrosovich, M. (2009): Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Arch. Virol. 154, 945–957.
Varghese, J. N., Colman, P. M., van Donkelaar, A., Blick, T. J., Sahasrabudhe, A., McKimm-Breschkin, J. L. (1997): Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc. Natl Acad. Sci. U.S.A. 94, 11808–11812.
Wan, H., Sorrell, E. M., Song, H., Hossain, M. J., Ramirez-Nieto, G., Monne, I., Stevens, J., Cattoli, G., Capua, I., Chen, L. M., Donis, R. O., Busch, J., Paulson, J. C., Brockwell, C., Webby, R., Blanco, J., Al-Natour, M. Q. and Perez, D. R. (2008): Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One 3, e2923.
Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V. and Kosakovsky Pond, S. L. (2018): Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777.
Xia, J., Cui, J., He, X., Liu, Y. Y., Yao, K. C., Cao, S. J., Han, X. F. and Huang, Y. (2017): Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013–2016. PLoS One 12, e0171564.