Authors:
Saša Koprivec Klinika Loka d.o.o, Škofja Loka, Slovenia

Search for other papers by Saša Koprivec in
Current site
Google Scholar
PubMed
Close
,
Marko Novak Klinika Loka d.o.o, Škofja Loka, Slovenia

Search for other papers by Marko Novak in
Current site
Google Scholar
PubMed
Close
,
Stanislav Bernik Klinika Loka d.o.o, Škofja Loka, Slovenia

Search for other papers by Stanislav Bernik in
Current site
Google Scholar
PubMed
Close
,
Metka Voga Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia

Search for other papers by Metka Voga in
Current site
Google Scholar
PubMed
Close
,
Luka Mohorič Animacel Biotechnology Ltd., Ljubljana, Slovenia

Search for other papers by Luka Mohorič in
Current site
Google Scholar
PubMed
Close
, and
Gregor Majdič Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia

Search for other papers by Gregor Majdič in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9620-2683
Restricted access

Abstract

In the present pilot study, we evaluated different supplemental therapies using autologous multipotent mesenchymal stromal cells (MMSCs) for the treatment of cranial cruciate ligament defects in dogs. We used tibial tuberosity advancement (TTA) and augmented it by supportive therapy with MMSCs in three patient groups. In the first patient group, the dogs were injected with MMSCs directly into the treated stifle one month after surgery. In the second group, MMSCs were delivered in a silk fibroin scaffold which was placed in the osteotomy gap during surgery. In the third group, MMSCs were first mixed with bone tissue and blood from the patient and delivered into the osteotomy gap during surgery. In the control group, patients underwent the TTA procedure but did not receive MMSC treatment. In the group of patients who received cells in the silk fibroin scaffold during surgery, the osteotomy gap did not heal, presumably due to the low absorption of silk fibroin. Patients who received MMSCs mixed with bone tissue and blood during surgery into the osteotomy gap recovered clinically faster and had better healing of the osteotomy gap than dogs from the other two treated groups and from the control group, as assessed by clinical examination and quantification of radiographs. In conclusion, dogs that received stem cells directly into the osteotomy gap (Group 3) recovered faster compared to dogs from Groups 1 (MMSCs injected into the joint one month after surgery), 2 (cells implanted into the osteotomy gap in a silk fibroin scaffold), and the control group that did not receive additional MMSCs treatment.

  • Baraniak, P. R. and McDevitt, T. C. (2010): Stem cell paracrine actions and tissue regeneration. Regen. Med. 5, 121143.

  • Black, L. L., Gaynor, J., Adams, C., Dhupa, S., Sams, A. E., Taylor, R., Harman, S., Gingerich, A. A. and Harman, R. (2008): Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet. Ther. 9, 192200.

    • Search Google Scholar
    • Export Citation
  • Black, L. L., Gaynor, J., Gahring, D., Adams, C., Aron, D., Harman, S., Gingerich, D. A. and Harman, R. (2007): Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet. Ther. 8, 272284.

    • Search Google Scholar
    • Export Citation
  • Boudrieau, R. J. (2009): Tibial plateau leveling osteotomy or tibial tuberosity advancement? Vet. Surg. 38, 122.

  • Braun, J., Hack, A., Weis-Klemm, M., Conrad, S., Treml, S., Kohler, K., Walliser, U., Skutella, T. and Aicher, W. K. (2010): Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. Am. J. Vet. Res. 71, 12281236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y. and Wang, B. (2009): Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10, 15141524.

  • Censi, R., Di Martino, P., Vermonden, T. and Hennink, W. E. (2012): Hydrogels for protein delivery in tissue engineering. J. Control. Release 161, 680692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J. H., Kim, D. K., Song, J. E., Oliveira, J. M., Reis, R. L. and Khang, G. (2018): Silk fibroin-based scaffold for bone tissue engineering. Adv. Exp. Med. Biol. 1077, 371387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, J. L. (2010): Cranial cruciate ligament disease in dogs: biology versus biomechanics. Vet. Surg. 39, 270277.

  • Coutu, D. L., Yousefi, A. M. and Galipeau, J. (2009): Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J. Cell. Biochem. 108, 537546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doom, M., de Bruin, T., de Rooster, H., van Bree, H. and Cox, E. (2008): Immunopathological mechanisms in dogs with rupture of the cranial cruciate ligament. Vet. Immunol. Immunopathol. 125, 143161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, M. P., Ferrigno, C. R., de Souza, A. N., Caquias, D. F. and de Figueiredo, A. V. (2016): Short-term comparison of tibial tuberosity advancement and tibial plateau levelling osteotomy in dogs with cranial cruciate ligament disease using kinetic analysis. Vet. Comp. Orthop. Traumatol. 29, 209213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortier, L. A. and Travis, A. J. (2011): Stem cells in veterinary medicine. Stem Cell Res. Ther. 2, 9.

  • Gardin, C., Ferroni, L., Bellin, G., Rubini, G., Barosio, S. and Zavan, B. (2018): Therapeutic potential of autologous adipose-derived stem cells for the treatment of liver disease. Int. J. Mol. Sci. 19, 4064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerrero, T. G., Makara, M. A., Katiofsky, K., Fluckiger, M. A., Morgan, J. P., Haessig, M. and Montavon, P. M. (2011): Comparison of healing of the osteotomy gap after tibial tuberosity advancement with and without use of an autogenous cancellous bone graft. Vet. Surg. 40, 2733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, K., Lansdowne, J. L. and Dejardin, L. (2010): Cranial cruciate ligament and meniscal injuries in dogs. In: Bojrab, M. J. and Monnet, E. (eds) Mechanisms of Disease in Small Animal Surgery. CRC Press, Boca Raton, FL, USA. pp. 646654.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, D. E., Miller, J. M., Ober, C. P., Lanz, O. I., Martin, R. A. and Shires, P. K. (2006): Tibial tuberosity advancement in 65 canine stifles. Vet. Comp. Orthop. Traumatol. 19, 219227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., Volloch, V., Kaplan, D. L. and Altman, G. H. (2005): In vitro degradation of silk fibroin. Biomaterials 26, 33853393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koh, S. and Piedrahita, J. A. (2014): From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81, 103111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna, L., Dhamodaran, K., Jayadev, C., Chatterjee, K., Shetty, R., Khora, S. S. and Das, D. (2016): Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res. Ther. 7, 188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krotscheck, U., Nelson, S. A., Todhunter, R. J., Stone, M. and Zhang, Z. (2016): Long term functional outcome of tibial tuberosity advancement vs. tibial plateau leveling osteotomy and extracapsular repair in a heterogeneous population of dogs. Vet. Surg. 45, 261268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafaver, S., Miller, N. A., Stubbs, W. P., Taylor, R. A. and Boudrieau, R. J. (2007): Tibial tuberosity advancement for stabilization of the canine cranial cruciate ligament-deficient stifle joint: surgical technique, early results, and complications in 101 dogs. Vet. Surg. 36, 573586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. J., Ryu, M. O., Seo, M. S., Park, S. B., Ahn, J. O., Han, S. M., Kang, K-S., Bhang, D-H. and Youn, H-Y. (2017): Mesenchymal stem cells contribute to improvement of renal function in a canine kidney injury model. In Vivo 31, 11151124.

    • Search Google Scholar
    • Export Citation
  • Liao, Y., Zhang, X. L., Li, L., Shen, F. M. and Zhong, M. K. (2014): Stem cell therapy for bone repair: a systematic review and meta-analysis of preclinical studies with large animal models. Br. J. Clin. Pharmacol. 78, 718726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, T. L., Allen, D. A. and Monteith, G. J. (2013): Clinical assessment following tibial tuberosity advancement in 28 stifles at 6 months and 1 year after surgery. Can. Vet. J.-Rev. Vet. Can. 54, 249254.

    • Search Google Scholar
    • Export Citation
  • Marx, C., Silveira, M. D. and Nardi, N. B. (2015): Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melke, J., Midha, S., Ghosh, S., Ito, K. and Hofmann, S. (2016): Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31, 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minteer, D., Marra, K. G. and Rubin, J. P. (2013): Adipose-derived mesenchymal stem cells: biology and potential applications. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R. and Kasper, C. (eds) Mesenchymal Stem Cells: Basics and Clinical Application I. Adv. Biochem. Eng./Biotechnol. 129, pp. 5971.

    • Search Google Scholar
    • Export Citation
  • Mohoric, L., Zorko, B., Ceh, K. and Majdic, G. (2016): Blinded placebo study of bilateral osteoarthritis treatment using adipose derived mesenchymal stem cells. Slovenian Vet. Res. 53, 167174.

    • Search Google Scholar
    • Export Citation
  • Montavon, P. M., Damur, D. M. and Tepic, S. (2004): Tibial tuberosity advancement (TTA) for the treatment of cranial cruciate disease in dogs: evidences, technique and initial clinical results. Paper presented at the 12th ESVOT Congress, Munich.

    • Search Google Scholar
    • Export Citation
  • Perez-Merino, E. M., Usón-Casaus, J. M., Zaragoza-Bayle, C., Duque-Carrasco, J., Marinas-Pardo, L., Hermida-Prieto, M., Hermida-Prieto, M., Barrera-Chacón, R. and Gualtieri, M. (2015): Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: endoscopic and histological outcomes. Vet. J. 206, 391397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polo-Corrales, L., Latorre-Esteves, M. and Ramirez-Vick, J. E. (2014): Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 14, 1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rychel, J. K. (2010): Diagnosis and treatment of osteoarthritis. Top. Companion Anim. Med. 25, 2025.

  • Shakouri-Motlagh, A., O'Connor, A. J., Brennecke, S. P., Kalionis, B. and Heath, D. E. (2017): Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater. 55, 112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, S. (2012): Tibial tuberosity advancement technique explained. Vet. Times 2019, from https://www.vettimes.co.uk/app/uploads/wp-post-to-pdf-enhanced-cache/1/tibial-tuberosity-advancement-technique-explained.pdf.

    • Search Google Scholar
    • Export Citation
  • Srzentic Drazilov, S., Mrkovacki, J., Spasovski, V., Fazlagic, A., Pavlovic, S. and Nikcevic, G. (2018): The use of canine mesenchymal stem cells for the autologous treatment of osteoarthritis. Acta Vet. Hung. 66, 376389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, S. and Schmoekel, H. (2008): Short-term and eight to 12 months results of a tibial tuberosity advancement as treatment of canine cranial cruciate ligament damage. J. Small Anim. Pract. 49, 398404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vega, A., Martin-Ferrero, M. A., Del Canto, F., Alberca, M., Garcia, V., Munar, A., Orozco, L., Soler, R., Fuertes, J. J., Huguet, M., Sánchez, A. and García-Sancho, J. et al. (2015): Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells. A randomized controlled trial: a randomized controlled. Transplantation 99, 16811690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villatoro, A. J., Hermida-Prieto, M., Fernandez, V., Farinas, F., Alcoholado, C., Rodriguez-Garcia, M. I., Marinas-Pardo, L. and Becerra, J. (2018): Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet. Rec. 183, 654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Author information is available in PDF.
Please, download the file from HERE.

The manuscript preparation instructions is available in PDF.
Please, download the file from HERE.

Senior editors

Editor-in-Chief: Ferenc BASKA

 

Editorial Board

  • Béla DÉNES (National Food Chain Safety Office, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (National Agricultural Innovation Centre, Herceghalom, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 287 7073 (ed.-in-chief) or (36 1) 467 4081 (editor)

E-mail: actavet@vmri.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2022  
Web of Science  
Total Cites
WoS
972
Journal Impact Factor 0.900
Rank by Impact Factor

Veterinary Sciences 95/143

Impact Factor
without
Journal Self Cites
0.900
5 Year
Impact Factor
1.1
Journal Citation Indicator 0.47
Rank by Journal Citation Indicator

Veterinary Sciences 103/170

Scimago  
Scimago
H-index
38
Scimago
Journal Rank
0.277
Scimago Quartile Score

Veterinary (miscellaneous) Q2

Scopus  
Scopus
Cite Score
1.9
Scopus
CIte Score Rank
General Veterinary 76/186 (59th PCTL)
Scopus
SNIP
0.475

2021  
Web of Science  
Total Cites
WoS
1040
Journal Impact Factor 0,959
Rank by Impact Factor Veterinary Sciences 103/144
Impact Factor
without
Journal Self Cites
0,876
5 Year
Impact Factor
1,222
Journal Citation Indicator 0,48
Rank by Journal Citation Indicator Veterinary Sciences 106/168
Scimago  
Scimago
H-index
36
Scimago
Journal Rank
0,313
Scimago Quartile Score Veterinary (miscellaneous) (Q2)
Scopus  
Scopus
Cite Score
1,7
Scopus
CIte Score Rank
General Veterinary 79/183 (Q2)
Scopus
SNIP
0,610

2020  
Total Cites 987
WoS
Journal
Impact Factor
0,955
Rank by Veterinary Sciences 101/146 (Q3)
Impact Factor  
Impact Factor 0,920
without
Journal Self Cites
5 Year 1,164
Impact Factor
Journal  0,57
Citation Indicator  
Rank by Journal  Veterinary Sciences 93/166 (Q3)
Citation Indicator   
Citable 49
Items
Total 49
Articles
Total 0
Reviews
Scimago 33
H-index
Scimago 0,395
Journal Rank
Scimago Veterinary (miscellaneous) Q2
Quartile Score  
Scopus 355/217=1,6
Scite Score  
Scopus General Veterinary 73/183 (Q2)
Scite Score Rank  
Scopus 0,565
SNIP  
Days from  145
submission  
to acceptance  
Days from  150
acceptance  
to publication  
Acceptance 19%
Rate

 

2019  
Total Cites
WoS
798
Impact Factor 0,991
Impact Factor
without
Journal Self Cites
0,897
5 Year
Impact Factor
1,092
Immediacy
Index
0,119
Citable
Items
59
Total
Articles
59
Total
Reviews
0
Cited
Half-Life
9,1
Citing
Half-Life
9,2
Eigenfactor
Score
0,00080
Article Influence
Score
0,253
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,09791
Average
IF
Percentile
42,606
Scimago
H-index
32
Scimago
Journal Rank
0,372
Scopus
Scite Score
335/213=1,6
Scopus
Scite Score Rank
General Veterinary 62/178 (Q2)
Scopus
SNIP
0,634
Acceptance
Rate
18%

 

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 732 EUR / 892 USD
Print + online subscription: 848 EUR / 1028 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 28 0 0
Oct 2023 29 9 1
Nov 2023 27 4 1
Dec 2023 75 4 4
Jan 2024 29 2 1
Feb 2024 24 3 2
Mar 2024 1 0 0