TP53 and PGAM1 genes play a key role in glycolysis which is an essential metabolic pathway of cancer cells for obtaining energy. The purpose of this work was to evaluate PGAM1 and TP53 mRNA expressions in canine mammary carcinomas (CMC) and to correlate them with animal data and tumour histological features. None of the nine samples analysed revealed PGAM1 DNA sequence variations. PGAM1 and TP53 RNA expressions from 21 CMC were analysed using a one-step reverse transcription-PCR kit and its platform system. Most CMC samples had low levels of PGAM1 mRNA (71.5%) and normal expression of TP53 mRNA (95.2%). Our results suggest a different feature of the Warburg effect on canine mammary cancer cells compared to human cells.
Clemmensen, A., Hansen, A. E., Holst, P., Schøier, C., Bisgaard, S., Johannesen, H. H., Ardenkjær-Larsen, J. H., Kristensen, A. T and Kjaer, A. (2020): [68Ga]Ga-NODAGA-E[(cRGDyK)]2 PET and hyperpolarized [1-13C]pyruvate MRSI (hyperPET) in canine cancer patients: simultaneous imaging of angiogenesis and the Warburg effect. Eur. J. Nucl. Med. Mol. Imag. 48, 395–405.
Costa, A., Oliveira, J. T., Gärtner, F., Kohn, B., Gruber, A. D. and Klopfleisch, R. (2011): Potential markers for detection of circulating canine mammary tumor cells in the peripheral blood. Vet. J. 190, 165–168.
Dalgin, G. S. and DeLisi, C. (2005): Simple discriminant functions identify small sets of genes that distinguish cancer phenotype from normal. Genome Informatics 6, 245–253.
Durany, N., Joseph, J., Jimenez, O. M., Climent, F., Fernández, P. L., Rivera, F. and Carreras, J. (2000): Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br. J. Cancer 82, 20–27.
Feng, Y., Zhang, X., Zhang, S., Xu, S., Chen, X., Zhou, C., Wang, X., Xie, X. and Luet, W. (2020): Paclitaxel resistance in ovarian cancers relies on a PGAM1 mediated glycolytic metabolism. Res. Square. https://doi.org/10.21203/rs.3.rs-103118/v1.
Gutte, H., Hansen, A. E., Larsen, M. M. E., Rahbek, S., Johannesen, H. H., Ardenkjaer-Larsen, J., Kristensen, A. T., Højgaard, L. and Kjaer, A. (2015): In vivo phenotyping of tumor metabolism in a canine cancer patient with simultaneous 18F-FDG-PET and hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (hyperPET): mismatch demonstrates that FDG may not always reflect the Warburg effect. Diagnostics 5, 287–289.
Hanahan, D. and Weinberg, R. A. (2011): Hallmarks of cancer: the next generation. Cell 144, 646–674.
Hitosugi, T., Zhou, L., Elf, S., Fan, J., Kang, H. B., Seo, J. H., Shan, C., Dai, Q., Zhang, L., Xie, J., Gu, T. L., Jin, P., Aleckovic, M., Leroy, G., Kang, Y., Sudderth, J. A., Deberardinis, R. J., Luan, C. H., Chen, G. Z., Muller, S., Shin, D. M., Owonikoko, T. K., Lonial, S., Arellano, M. L., Khoury, H. J., Khuri, F. R., Lee, B. H., Ye, K., Boggon, T. J., Kang, S., He, C. and Chen, J. (2012): Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22, 585–600.
Hussain, S., Saxena, S., Shrivastava, S., Arora, R., Singh, R. J., Jena, S. C., Kumar, N., Sharma, A. K., Sahoo, M., Tiwari, A. K., Mishra, B. P. and Singh, R. K. (2018): Multiplexed autoantibody signature for serological detection of canine mammary tumours. Sci. Rep. 8, 1–14.
Jin, L. and Zhou, Y. (2019): Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncol. Lett. 17, 4213–4221.
Klopfleisch, R., Klose, P. and Gruber, A. D. (2010): The combined expression pattern of bmp2, ltbp4, and derl1 discriminates malignant from benign canine mammary tumors. Vet. Pathol. 47, 446–454.
Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., Martinez, D., Carnero, A. and Beach, D. (2005): Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185.
Liu, X., Tan, X., Liu, P., Wu, Y., Qian, S. and Zhang, X. (2018): Phosphoglycerate mutase 1 (PGAM1) promotes pancreatic ductal adenocarcinoma (PDAC) metastasis by acting as a novel downstream target of the PI3K/Akt/mTOR pathway. Oncol. Res. 26, 1123–1131.
Mikawa, T., Okamoto, K., LLeonart, M. E., Yoshida, Y., Takaori-Kondo, A., Yokode, M., Inagaki, N. and Kondoh H. (2014a): Posttranscriptional regulation of glycolytic enzyme phosphoglycerate mutase. Sci. Proc. 1, 1–4.
Mikawa, T., Maruyama, T., Okamoto, K., Nakagama, H., LLeonart, M. E., Tsusaka, T., Hori, K., Murakami, I., Izumi, T., Takaori-Kondo, A., Yokode, M., Peters, G., Beach, D. and Kondoh, H. (2014b): Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2. J. Cell Biol. 204, 729–745.
Owen, L. N. (1980): Mammary glands. In: Owen, L. N. (ed.) TNM Classification of Tumours in Domestic Animals. First edition. World Health Organization, Geneva. pp. 16–20.
Qu, J., Sun, W., Zhong, J., Lv, H., Zhu, M., Xu, J., Jin, N., Xie, Z., Tan, M., Lin, S., Geng, M., Ding, J. and Huang, M. (2017): Phosphoglycerate mutase 1 regulates dNTP pool and promotes homologous recombination repair in cancer cells. J. Cell Biol. 216, 409–424.
Ren, F., Wu, H., Lei, Y., Zhang, H., Liu, R., Zhao, Y., Chen, X., Zeng, D., Tong, A., Chen, L., Wei, Y. and Huang, C. (2010): Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol. Cancer 9, 81.
Ruiz-Lozano, P., Hixon, M. L. and Wagner, M. W. (1999): P53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ. 10, 295–306.
Semenza, G. L. (2012): Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207–214.
Shen, L., Sun, X., Fu, Z., Yang, G., Li, J. and Yao, L. (2012): The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin. Cancer Res. 18, 1561–1567.
Shi, L., Jones, W. D., Jensen, R. V., Harris, S. C., Perkins, R. G., Goodsaid, F. M., Guo, L., Croner, L. J., Boysen, C., Fang, H., Qian, F., Amur, S., Bao, W., Barbacioru, C. C., Bertholet, V., Cao, X. M., Chu, T. M., Collins, P. J., Fan, X. H., Frueh, F. W., Fuscoe, J. C., Guo, X., Han, J., Herman, D., Hong, H., Kawasaki, E. S., Li, Q. Z., Luo, Y., Ma, Y., Mei, N., Peterson, R. L., Puri, R. K., Shippy, R., Su, Z., Sun, Y. A., Sun, H., Thorn, B., Turpaz, Y., Wang, C., Wang, S. J., Warrington, J. A., Willey, J. C., Wu, J., Xie, Q., Zhang, L., Zhang, L., Zhong, S., Wolfinger, R. D. and Tong, W. (2008): The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinf. 12, S10.
Warburg, O. (1956): On the origin of cancer cells. Science 123, 309–314.
Zamani-Ahmadmahmudi, M., Nassiri, S. M. and Rahbarghazi, R. (2014): Serological proteome analysis of dogs with breast cancer unveils common serum biomarkers with human counterparts. Electrophoresis 35, 901–910.
Zhang, C., Liu, J., Liang, Y., Wu, R., Zhao, Y., Hong, X., Lin, M., Yu, H., Liu, L., Levine, A. J., Hu, W. and Feng, Z. (2013): Tumor-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935.
Zhang, D., Wu, H., Zhang, X., Ding, X., Huang, M., Geng, M., Li, H. and Xie, Z. (2017): Phosphoglycerate mutase 1 predicts the poor prognosis of oral squamous cell carcinoma and is associated with cell migration. J. Cancer 8, 1943–1951.