Although domestic cats are one of the most popular companion animals, current knowledge on the fate of micronutrients in cats according to their age, sex, and health is very limited. In this study, 72 whole blood and 54 plasma samples from cats of different ages and sex were collected at three veterinary offices in the Czech Republic, and the copper (Cu), selenium (Se), and zinc (Zn) concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that Cu was significantly (P < 0.05) higher in both plasma and whole blood of males (980 and 958 μg L−1 in plasma and whole blood, respectively) than in females (741 and 766 μg L−1 in plasma and whole blood, respectively), whereas no significant differences between males and females were found for Se and Zn. Similarly, no significant differences were recorded for any of the three elements according to age, although animals older than 7 years tended to have lower plasma concentrations of all three elements. Hypertrophic cardiomyopathy (HCM) is one of the most prevalent diseases of domestic cats. The potential relationship between the essential microelement status in the blood of cats with HCM vs. cats with no clinical signs of HCM was taken into account, but the limited number of HCM-positive individuals did not allow any clear conclusion. Thus, the potential relationships between micronutrient status in cats and the incidence of HCM should be elucidated in further research.
Abbott, J. A. (2010): Feline hypertrophic cardiomyopathy: an update. Vet. Clin. North Am. Small Anim. 40 ,685–700.
Alexanian, I., Parissis, J., Farmakis, D., Athanaselis, S., Pappas, L., Gavrielatos, G., Mihas, C., Paraskevaidis, I., Sideris, A., Kremastinos, D., Spiliopoulou, Ch., Anastasiou-Nana, M., Lekakis, J. and Filippatos, G. (2014): Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin. Res. Cardiol. 103 ,938–949.
Altunok, V., Yazar, E. and Yuksek, N. (2007): Selected blood serum elements in Van (Turkey) cats. Acta Vet. Brno 76 ,171–177.
Batista, B. L., Rodrigues, J. L., Nunes, J. A., Souza, V. C. D. and Barbosa, F. (2009): Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure. Anal. Chim. Acta 639 ,13–18.
Bayır, A., Kara, H., Kıyıcı, A., Öztürk, B. and Akyürek, F. (2013): Levels of selenium, zinc, copper, and cardiac troponin I in serum of patients with acute coronary syndrome. Biol. Trace Elem. Res. 154 ,352–356.
Bechert, U., Mortenson, J., Dierenfeld, E. S., Cheeke, P., Keller, M., Holick, M., Chen, T. C. and Rogers, Q. (2002): Diet composition and blood values of captive cheetahs (Acinonyx jubatus) fed either supplemented meat or commercial food preparations. J. Zoo Wildl. Med. 33 ,16–28.
Beckmann, K. M., O’Donovan, D., McKeown, S., Wernery, U., Basu, P. and Bailey, T. A. (2013): Blood vitamins and trace elements in Northern-East African cheetahs (Acinonyx jubatus soemmeringii) in captivity in the Middle East. J. Zoo Wildl. Med. 44 ,613–626.
Camora, L. F., Silva, A. P. G, Santos, S. A. A., Justulin, L. A., Perobelli, J. E., Barbisan, L. F. and Scarano, W. R. (2017): Impact of maternal and postnatal zinc dietary status on the prostate of pubescent and adult rats. Cell Biol. Int. 41 ,1203–1213.
Cunha, S., Filho, F. M. A. and Bastos, V. L. F. (2002): Thiamine, selenium, and copper levels in patients with idiopathic dilated cardiomyopathy taking diuretics. Arq. Bras. Cardiol. 79 ,454–465.
de Lorgeril, M., Salen, P., Accominotti, M., Cadau, M., Steghens, J. P., Boucher, F. and de Leiris, J. (2001): Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur. J. Heart Fail. 3 ,661–669.
Elsherif, L., Ortines, R. V., Saari, J. T. and Kang, Y. J. (2003): Congestive heart failure in copper-deficient mice. Exp. Biol. Med. 228 ,811–817.
Fascetti, A. J., Rogers, Q. R. and Morris, J. G. (2002): Blood copper concentrations and cuproenzyme activities in a colony of cats. Vet. Clin. Pathol. 31 ,183–188.
Foster, D. J., Thoday, K. L., Arthur, J. R., Nicol, F., Beatty, J. A., Svendsen, C. K., Labuc, R., McConnell, M., Sharp, M., Thomas, J. B. and Beckett, G. J. (2001): Selenium status of cats in four regions of the world and comparison with reported incidence of hyperthyroidism in cats in those regions. Am. J. Vet. Res. 62 ,934–937.
Fox, P. R., Trautwein, E. A., Hayes, K. C., Bond, B. R., Sisson, D. D. and Moise, N. S. (1993): Comparison of taurine, alpha-tocopherol, retinol, selenium, and total triglycerides and cholesterol concentrations in cats with cardiac disease and in healthy cats. Am. J. Vet. Res. 54 ,563–569.
Freeman, L. M., Rush, J. E., Cunningham, S. M. and Bulmer, B. J. (2014): A randomized study assessing the effect of diet in cats with hypertrophic cardiomyopathy. J. Vet. Intern. Med. 28 ,847–856.
Fuentes, V. L. and Wilkie, L. J. (2017): Asymptomatic hypertrophic cardiomyopathy: diagnosis and therapy. Vet. Clin. Small Anim. 47 ,1041–1054.
Ghaemian, A., Salehifar, E., Jalalian, R., Ghasemi, F., Azizi, S., Masoumi, S., Shiraj, H., Mohammadpour, R. A. and Bagheri, G. A. (2011): Zinc and copper levels in severe heart failure and the effects of atrial fibrillation on the zinc and copper status. Biol. Trace Elem. Res. 143 ,1239–1246.
Ghayour-Mobarhan, M., Taylor, A., New, S. A., Lamb, D. J. and Ferns, G. A. A. (2005): Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem. 42 ,364–375.
Granström, S., Nyberg Godiksen, M. T., Christiansen, M., Pipper, C. B., Willesen, J. T. and Koch, J. (2011): Prevalence of hypertrophic cardiomyopathy in a cohort of British shorthair cats in Denmark. J. Vet. Intern. Med. 25 ,866–871.
Gundler, S., Tidholm, A. and Häggström, J. (2008): Prevalence of myocardial hypertrophy in a population of asymptomatic Swedish Maine coon cats. Acta Vet. Scand. 50 ,22.
Jiang, Y. C., Reynolds, C., Xiao, C., Feng, W. K., Zhou, Z. X., Rodriguez, W., Tyagi, S. C., Eaton, J. W., Saari, J. T. and Kang, Y. J. (2007): Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J. Exp. Med. 204 ,657–666.
Karagulova, G., Yue, Y., Moreyra, A., Boutjdir, M. and Korichneva, I. (2007): Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J. Pharmacol. Exp. Ther. 321 ,517–525.
Kieliszek, M. and Blazejak, S. (2012): Selenium: significance, and outlook for supplementation. Nutrition 29 ,713–718.
Kkeveetil, C. V., Thomas, G. and Chander, S. J. U. (2016): Role of micronutrients in congestive heart failure: a systematic review of randomized controlled trials. Tzu Chi Med. J. 28 ,143–150.
Kosar, F., Sahin, I., Taskapan, C., Kücükbay, Z., Güllü, H., Taskapan, H. and Cehreli, S. (2006): Trace element status (Se, Zn, Cu) in heart failure. Anatol. J. Cardiol. 6 ,216–220.
Krofič Žel, M., Tozon, N. and Nemec Svete, A. (2014): Plasma and erythrocyte glutathione peroxidase activity, serum selenium concentration, and plasma total antioxidant capacity in cats with IRIS stages I–IV chronic kidney disease. J. Vet. Intern. Med. 28 ,130–136.
Little, P. J., Bhattacharya, R., Moreyra, A. E. and Korichneva, I. L. (2010): Zinc and cardiovascular disease. Nutrition 26 ,1050–1057.
Madaric, A., Ginter, E. and Kadrabova, J. (1994): Serum copper, zinc and copper/zinc ratio in males – influence of aging. Physiol. Res. 43 ,107–111.
McKeag, N. A., McKinley, M. C., Woodside, J. V., Harbinson, M. T., McKeown, P. P. (2012): The role of micronutrients in heart failure. J. Acad. Nutr. Diet. 112 ,870–886.
Melnikov, P., Consolo, L. Z., da Silva, A. F., Domingos, H. and do Nascimento, V. A. (2014): Hematologic parameters and copper levels in patients with cardiomyopathies. Int. J. Cardiol. 172 ,E149–E150.
Michałek, M., Tabiś, A., Pasławska, U. and Noszczyk-Nowak, A. (2020): Antioxidant defence and oxidative stress markers in cats with asymptomatic and symptomatic hypertrophic cardiomyopathy: a pilot study. BMC Vet. Res. 16 ,26.
Milne, D. B. and Johnson, P. E. (1993): Assessment of copper status: effect of age and gender on reference ranges in healthy adults. Clin. Chem. 39 ,883–887.
Ozpinar, H., Zentek, J., Deniz, A. and Kamphues, J. (1995): Effects of different zinc salts on the fecal and renal excretion of zinc and on zinc concentrations in the blood of dogs and cats. Kleintierpraxis 40 ,161–166.
Pizent, A., Pavlovic, M., Jurasovic, J., Dodig, S., Pasalic, D. and Mujagic, R. (2010): Antioxidants, trace elements and metabolic syndrome in elderly subjects. J. Nutr. Health Aging 14 ,866–871.
Rosenblum, H., Wessler, J. D., Gupta, A., Maurer, M. S. and Bikdeli, B. (2020): Zinc deficiency and heart failure: a systematic review of the current literature. J. Card. Fail. 26 ,180–189.
Rzymski, P., Niedzielski, P., Poniedzialek, B., Rzymski, P., Pacynska, J., Kozak, L. and Dabrowski, P. (2015): Free-ranging domestic cats are characterized by increased metal content in reproductive tissues. Reprod. Toxicol. 58 ,54–60.
Sabatino, B. R., Rohrbach, B. W., Armstrong, P. J. and Kirk, C. A. (2013): Amino acid, iodine, selenium, and coat color status among hyperthyroid, Siamese, and age-matched control cats. J. Vet. Intern. Med. 27 ,1049–1055.
Shimada, B. K., Alfulaij, N. and Seale, L. A. (2021): The impact of selenium deficiency on cardiovascular function. Int. J. Mol. Sci. 22 ,10713.
Shokrzadeh, M., Ghaemian, A., Salehifar, E., Aliakbari, S., Saravi, S. S. S. and Ebrahimi, P. (2009): Serum zinc and copper levels in ischemic cardiomyopathy. Biol. Trace Elem. Res. 127 ,116–123.
Taghavi, S., Qoreishi, S. A. H., Naderi, N., Amin, A., Futuhi, F., Kordrostami, S., Bakhshandeh, H. and Khalaj, H. (2020): Importance of serum selenium levels in acute heart failure. Iranian Heart J. 21 ,118–127.
Todd, S. E., Thomas, D. G., Bosch, G. and Hendriks, W. H. (2012a): Selenium status in adult cats and dogs fed high levels of dietary inorganic and organic selenium. J. Anim. Sci. 90 ,2549–2555.
Todd, S. E., Thomas, D. G. and Hendriks, W. H. (2012b): Selenium balance in the adult cat in relation to intake of dietary sodium selenite and organically bound selenium. J. Anim. Physiol. Anim. Nutr. 96 ,148–158.
Tomaszewska, E., Dobrowolski, P. and Kwiecien, M. (2016): Intestinal alterations, basal hematology, and biochemical parameters in adolescent rats fed different sources of dietary copper. Biol. Trace Elem. Res. 171 ,185–191.
Topuzoglu, G., Erbay, A. R., Karul, A. B. and Yensel, N. (2003): Concentrations of copper, zinc and magnesium in sera from patients with idiopathic dilated cardiomyopathy. Biol. Trace Elem. Res. 95 ,11–17.
Villaverde, A. I. S. B., Fioratti, E. G., Ramos, R. S., Neves, R. C. F., Ferreira, J. C. P., Cardoso, G. S., Padilha, P. M. and Lopes, M. D. (2014): Blood and seminal plasma concentrations of selenium, zinc and testosterone and their relationship to sperm quality and testicular biometry in domestic cats. Anim. Reprod. Sci. 150 ,50–55.
Webb, C. B. and Falkowski, L. (2009): Oxidative stress and innate immunity in feline patients with diabetes mellitus: the role of nutrition. J. Feline Med. Surg. 11 ,271–276.
Wedekind, K. J., Howard, K. A., Backus, R. C., Yu, S., Morris, J. G. and Rogers, Q. R. (2003): Determination of the selenium requirement in kittens. J. Anim. Physiol. Anim. Nutr. 87 ,315–323.