Authors:
Seyyide Sarıçam İnce Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey

Search for other papers by Seyyide Sarıçam İnce in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2386-6857
and
Mehmet Akan Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey

Search for other papers by Mehmet Akan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7342-1450
Restricted access

Abstract

Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.

  • Ahn, J. Y., Ann, H. W., Jeon, Y., Ahn, M. Y., Oh, D. H., Kim, Y. C., Kim, E. J, Song J. E., Jung, I. Y., Kim, M. H., Jeong W., Ku, N. S., Jeong, S. J., Choi J. Y., Yong, D., Song, Y. G. and Kim, J. M. (2017): The impact of production of extended-spectrum beta-lactamases on the 28-day mortality rate of patients with Proteus mirabilis bacteremia in Korea. BMC Infect. Dis. 17, 110. https://doi.org/10.1186/s12879-017-2431-8.

    • Search Google Scholar
    • Export Citation
  • Aurilio, C., Sansone, P., Barbarisi, M., Pota, V., Giaccari, L. G., Coppolino, F., Barbarisi, A., Passavanti, M. B. and Pace, M. C. (2022): Mechanisms of action of carbapenem resistance. Antibiotics 11, 18. https://doi.org/10.3390/antibiotics11030421.

    • Search Google Scholar
    • Export Citation
  • Barbour, E. K., Hajj, Z. G., Hamadeh, S., Shaib, H. A., Farran, M. T., Araj, G., Faroon, O., Barbour, K. E., Jirjis, F., Azhar, E., Kumosani T. and Harakeh, S. (2012): Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. Pathog. Glob. Health 106, 352357. https://doi.org/10.1179/2047773212Y.0000000042.

    • Search Google Scholar
    • Export Citation
  • Bauer, A. W., Perry, D. M. and Kirby, W. M. (1959): Single disc antibiotic sensitivity testing of Staphylococci; an analysis of technique and results Achi. Intern. Med. Res. 104, 208216.

    • Search Google Scholar
    • Export Citation
  • Bonnet, R., Sampaio, J. L. M., Labia, R., De Champs, C., Sirot, D., Chanal, C. and Sirot, J. (2000): A novel CTX-M beta-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil. Antimicrob. Agents Chemother. 44, 19361942.

    • Search Google Scholar
    • Export Citation
  • Carlson, S. A., Bolton, L. F., Briggs, C. E., Hurd, H. S., Sharma, V. K., Fedorka-Cray, P. J. and Jones, B. D. (1999): Detection of multiresistant Salmonella Typhimurium DT104 using multiplex and fluorogenic PCR. Mol. Cell Probes. 13, 213222.

    • Search Google Scholar
    • Export Citation
  • Cestari, S. E., Ludovico, M. S., Martins, F. H., De Rocha, S. P. D., Elias, W. P. and Pelayo, J. S. (2013): Molecular detection of hpmA and hlyA hemolysin of uropathogenic Proteus mirabilis. Curr. Microbiol. 67, 703707. https://doi.org/10.1007/s00284-013-0423-5.

    • Search Google Scholar
    • Export Citation
  • Chen, S., Zhao, S., White, D. G., Schroeder, C. M., Lu, R., Yang, H., McDermott, P. F., Ayers, S. and Meng, J. (2004): Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 70, 17. https://doi.org/10.1128/AEM.70.1.1–7.2004.

    • Search Google Scholar
    • Export Citation
  • Cherak, Z., Loucif, L., Moussi, A. and Rolain, J. M. (2021): Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J. Glob. Antimicrob. Resist. 25, 287309. https://doi.org/10.1016/j.jgar.2021.03.024.

    • Search Google Scholar
    • Export Citation
  • CLSI, (2017): Performance standards for antimicrobial susceptibility testing. In M100 (Wayne, USA).

  • Doyle, D., Peirano, G., Lascols, C., Lloyd, T., Church, D. L. and Pitout, J. D. D. (2012): Laboratory detection of Enterobacteriaceae that produce carbapenemases. J. Clin. Microbiol. 50, 38773880. https://doi.org/10.1128/JCM.02117-12.

    • Search Google Scholar
    • Export Citation
  • Eibach, D., Dekker, D, Boahen, K. G., Akenten, C. W., Sarpong, N., Campos, C. B., Berneking, L., Aepfelbacher, M., Krumkamp, R., Owusu-Dabo, E. and May, J. (2018): Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet. Microbiol. 217, 712. https://doi.org/10.1016/j.vetmic.2018.02.023.

    • Search Google Scholar
    • Export Citation
  • El-Demerdash, A. S., Aggour, M. G., El Azzouny, M. M. and Khadra, S. H. A. (2018): Molecular analysis of integron gene cassette arrays associated multi-drug resistant Enterobacteriaceae isolates from poultry. Cell Mol. Biol. 64, 149156. http://doi.org/10.14715/cmb/2018.64.5.25.

    • Search Google Scholar
    • Export Citation
  • Guerri, M. L. Aladuena, A., Echeita, A. and Rotger, R. (2004): Detection of integrons and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium isolates with resistance to ampicillin and variable susceptibility to amoxicillin-clavulanate. Int. J. Antimicrob. Agents 24, 327333. https://doi.org/10.1016/j.ijantimicag.2004.04.009.

    • Search Google Scholar
    • Export Citation
  • Guo, S., Aung, K. T., Tay, M. Y. F., Seow, K. L. G., Ng, L. C. and Schlundt, J. (2019): Extended-spectrum beta-lactamase-producing Proteus mirabilis with multidrug resistance isolated from raw chicken in Singapore: Genotypic and phenotypic analysis. J. Glob. Antimicrob. Resist. 19, 252254. http://doi.org/10.1016/j.jgar.2019.10.013.

    • Search Google Scholar
    • Export Citation
  • Gür, D. (2004): General Characteristics of ESBLs and ESBL Types, New and Reemerging Infections (ESBL’lerin genel özellikleri ve ESBL tipleri, yeni ve yeniden gündeme gelen infeksiyonlar In Turkish). Bilimsel Tıp Yayınevi, Ankara, pp. 513.

    • Search Google Scholar
    • Export Citation
  • Haeili, M., Salehzeinali, H., Mirzaei, S., Pishnian, Z. and Ahmadi, A. (2022): Molecular characterization of quinolone resistance and antimicrobial resistance profiles of Klebsiella pneumoniae and Escherichia coli isolated from human and broiler chickens. Int. J. Environ. Health Res. 32, 13821392. http://doi.org/10.1080/09603123.2021.1885632.

    • Search Google Scholar
    • Export Citation
  • Himpsl, S. D., Pearson, M. M., Arewang, C. J., Nusca, T. D., Sherman, D. H. and Mobley, H. L. (2010): Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol. Microbiol. 78, 138157. http://doi.org/10.1111/j.1365-2958.2010.07317.x.

    • Search Google Scholar
    • Export Citation
  • Ishaq, K. Ahmad, A., Rafique, A., Aslam, R., Ali, S., Shahid, M. A., Sarwar N., Aslam, M. A., Aslam, B. and Arshad, M. I. (2022): Occurrence and antimicrobial susceptibility of Proteus mirabilis from chicken carcass. Pak. Vet. J. 42, 576579. http://doi.org/10.29261/pakvetj/2022.026.

    • Search Google Scholar
    • Export Citation
  • Jabeen, K., Zafar, A. and Hasan, R. (2003): Comparison of double disc and combined disc method for the detection of extended spectrum beta lactamases in Enterobacteriaceae. J. Pak. Med. Assoc. 53, 534536.

    • Search Google Scholar
    • Export Citation
  • Khoramian, B., Jabalameli, F., Niasari-Naslaji, A., Taherikalani, M. and Emaneini, M. (2015): Comparison of virulence factors and biofilm formation among Staphylococcus aureus strains isolated from human and bovine infections. Microb. Pathog. 88, 7377. http://doi.org/10.1016/j.micpath.2015.08.007.

    • Search Google Scholar
    • Export Citation
  • Kluytmans, J. A. J. W., Overdevest, I. T. M. A., Willemsen, I., Kluytmans-van den Bergh, M. F. Q., van der Zwaluw, K., Heck, M., Rijnsburger, M., Vandenbroucke-Grauls C. M. J. E., Savelkoul, P. H. M., Johnston, B. D., Gordon, D. and Johnson J. R. (2013): Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 56, 478487. http://doi.org/10.1093/cid/cis929.

    • Search Google Scholar
    • Export Citation
  • Lapierre, L. Cornejo, J., Zavala, S., Galarce, N., Sánchez, F., Benavides, M. B., Guzmán, M. and Sáenz, L. (2020): Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: first findings in Chile. Animals 10, 115. http://doi.org/10.3390/ani10061049.

    • Search Google Scholar
    • Export Citation
  • Leverstein-van Hall, M. A., Dierikx, C. M., Cohen Stuart, J., Voets, G. M., van den Munckhof, M. P., van Essen-Zandbergen, A., Platteel, T., Fluit, A. C., van de Sande-Bruinsma, N., Scharinga, J., Bonten, M. J. M., Mevius, D. J. and The national ESBL surveillance group. (2011): Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infec. 17, 873880. http://doi.org/10.1111/j.1469-0691.2011.03497.x.

    • Search Google Scholar
    • Export Citation
  • Li, S., Guo, F. Z., Zhao, X. J., Wang, Q., Wang, H., An, Y. Z. and Zhu, F. X. (2019): Impact of individualized active surveillance of carbapenem-resistant enterobacteriaceae on the infection rate in intensive care units: a 3-year retrospective study in a teaching hospital of People's Republic of China. Infect. Drug Resist. 12, 14071414. http://doi.org/10.2147/IDR.S201644.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Peng, C., Zhang, G., Shen, Y., Zhang, Y., Liu, C., Liu, M. and Wang, F. (2022): Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poult. Sci. 101, 17. https://doi.org/10.1016/j.psj.2022.101710.

    • Search Google Scholar
    • Export Citation
  • Lim, E. J., Ho, S. X., Cao, D. Y., Lau, Q. C., Koh, T. H. and Hsu, L. Y. (2016): Extended-spectrum beta-lactamase-producing Enterobacteriaceae in retail chicken meat in Singapore. Ann. Acad. Med. Singap. 45, 557559.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H. and Shen, J. (2016): Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161168. http://doi.org/10.1016/S1473-3099(15)00424-7.

    • Search Google Scholar
    • Export Citation
  • Ma, S., Shen, J., Xu, Y., Ding, P., Gao, X., Pan, Y., Wu, H., Hu, G. and He, D. (2023): Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult. Sci. 102, 18. https://doi.org/10.1016/j.psj.2023.102640.

    • Search Google Scholar
    • Export Citation
  • Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T. and Monnet, D. L. (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

    • Search Google Scholar
    • Export Citation
  • Markey, B., Leonard, F., Archambault, M., Cullinane, A. and Maguire, D. (2013): Clinical Veterinary Microbiology, 2nd edn. Mosby Elsevier, Dublin, 239274.

    • Search Google Scholar
    • Export Citation
  • Moawad, A. A., Hotzel, H., Neubauer, H., Ehricht, R., Monecke, S., Tomaso, H., Hafez, H. M., Roesler, U. and El-Adawy, H. (2018): Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum beta-lactamase-producing Escherichia coli. Gut Pathog. 10, 112. https://doi.org/10.1186/s13099-018-0266-5.

    • Search Google Scholar
    • Export Citation
  • Mora, A., Herrera, A., Mamani, R., Lopez, C., Alonso, M. P., Blanco, J. E., Blanco, M., Dahbi, G., Garcia-Garrote, F., Pita, J. M., Coira, A., Bernardez, M. I. and Blanco, J. (2010): Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl. Environ. Microbiol. 76, 69916997. https://doi.org/10.1128/AEM.01112-10.

    • Search Google Scholar
    • Export Citation
  • Olsen, R. H., Bisgaard, M., Löhren, U., Robineau, B. and Christensen, H. (2014): Extended-spectrum beta-lactamase-producing Escherichia coli isolated from poultry: a review of current problems, illustrated with some laboratory findings. Avian Pathol. 43, 199208. https://doi.org/10.1080/03079457.2014.907866.

    • Search Google Scholar
    • Export Citation
  • Öcal, D. (2012): Gram negatif bakterilerde antibakteriyal direncin fenotipik yöntemler ile tayin ve bildirimi. Ankem Derg. 26, 154164. https://doi.org/10.5222/ankem.2012.154.

    • Search Google Scholar
    • Export Citation
  • Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D. and Hooper, D. C. (2006): Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50, 39533955. https://doi.org/10.1128/AAC.00915-06.

    • Search Google Scholar
    • Export Citation
  • Rebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J. A., Battisti, A., Franco A., Alba, P., Perrin-Guyomard, A., Granier, S. A., Escobar, C. D. F., Malhotra-Kumar, S., Villa, L., Carattoli, A. and Hendriksen, R. S. (2018): Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 23, 111.

    • Search Google Scholar
    • Export Citation
  • Ripabelli, G., Salzo, A., Mariano, A., Sammarco, M. L., Tamburro, M. and Collaborative Group for HAIs Point Prevalence Surveys in Molise Region (2019): Healthcare-associated infections point prevalence survey and antimicrobials use in acute care hospitals (PPS 2016–2017) and long-term care facilities (HALT-3): a comprehensive report of the first experience in Molise Region, Central Italy, and targeted intervention strategies. J. Infect. Public Health 12, 509515. https://doi.org/10.1016/j.jiph.2019.01.060.

    • Search Google Scholar
    • Export Citation
  • Robicsek, A., Strahilevitz, J., Jacoby, G. A., Macielag, M., Abbanat, D., Park, C. H., Bush, K. and Hooper, D. C. (2006a): Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 8388. https://doi.org/10.1038/nm1347.

    • Search Google Scholar
    • Export Citation
  • Robicsek, A., Strahilevitz, J., Sahm, D. F., Jacoby, G. A. and Hooper, D. C. (2006b): qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother 50, 28722874. https://doi.org/10.1128/AAC.01647-05.

    • Search Google Scholar
    • Export Citation
  • Rocha, S. P. D., Elias, W. P., Cianciarullo, A. M., Menezes, M. A., Nara, J. M., Piazza, R. M. F., Silva, M. R. L., Moreira, C. G. and Pelayo, J. S. (2007): Aggregative adherence of uropathogenic Proteus mirabilis to cultured epithelial cells. FEMS Immunol. Med. Microbiol. 51, 319326. https://doi.org/10.1111/j.1574-695X.2007.00308.x.

    • Search Google Scholar
    • Export Citation
  • Sanches, M. S., Baptista, A. A. S., De Souza, M., Menck-Costa, M. F., Koga, V. L., Kobayashi, R. K. T. and Rocha, S. P. D. (2019): Genotypic and phenotypic profiles of virulence factors and antimicrobial resistance of Proteus mirabilis isolated from chicken carcasses: potential zoonotic risk. Braz. J. Microbiol. 50, 685694. https://doi.org/10.1007/s42770-019-00086-2.

    • Search Google Scholar
    • Export Citation
  • Su, Y., Xin, L., Zhang, F., Peng, C., Li, Z., Liu, C. and Wang, F. (2023): Drug resistance analysis of three types of avian-origin carbapenem-resistant Enterobacteriaceae in Shandong Province, China. Poult. Sci. 102. https://doi.org/10.1016/j.psj.2023.102483.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Wen, S., Zhao, L., Xia, Q., Pan, Y., Liu, H., Wei, C., Chen, H., Ge, J. and Wang, H. (2020): Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet. Res. 16, 110. https://doi.org/10.1186/s12917-020-02372-w.

    • Search Google Scholar
    • Export Citation
  • Talebi, A., Momtaz, H. and Tajbakhsh, E. (2023): Frequency distribution of virulence factors and antibiotic resistance genes in uropathogenic Proteus species isolated from clinical samples. Lett. Appl. Microbiol. 76, 18. https://doi.org/10.1093/lambio/ovac043.

    • Search Google Scholar
    • Export Citation
  • Weill, F. X., Demartin, M., Tande, D., Espie, E., Rakotoarivony, I. and Grimont, P. A. D. (2004): SHV-12-like extended-spectrum-beta-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. J. Clin. Microbiol. 42, 24322437. https://doi.org/10.1128/JCM.42.6.2432–2437.2004.

    • Search Google Scholar
    • Export Citation
  • WHO (2014): Antimicrobial Resistance: Global Report on Surveillance, 119.

  • Wong, M. H. Y., Wan, H. Y. and Chen, S. (2013): Characterization of multidrug-resistant Proteus mirabilis isolated from chicken carcasses. Foodborne Pathog. Dis. 10, 177181. https://doi.org/10.1089/fpd.2012.1303.

    • Search Google Scholar
    • Export Citation
  • Yeh, H. Y., Line, J. E. and Hinton, A. (2018): Molecular analysis, biochemical characterization, antimicrobial activity, and immunological analysis of Proteus mirabilis isolated from broilers. J. Food Sci. 83, 770779. https://doi.org/10.1111/1750-3841.14056.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., Joossens, M., Van de Abele, A. M., Kerkhof, P. J. and Houf, K. (2021): Isolation, characterization and antibiotic resistance of Proteus mirabilis from Belgian broiler carcasses at retail and human stool. Food Microbiol. 96, 19. https://doi.org/10.1016/j.fm.2020.103724.

    • Search Google Scholar
    • Export Citation
  • Zhai, R., Fu, B., Shi, X., Sun, C., Liu, Z., Wang, S., Shen, Z., Walsh, T. R., Cai, C., Wang, Y. and Wu, C. (2020): Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ. Int. 139, 111. https://doi.org/10.1016/j.envint.2020.105715.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., Li, J., Wang, Y., Shen, J., Shen, Z. and Wang, S. (2019): Presence of NDM in non-E. coli Enterobacteriaceae in the poultry production environment. J. Antimicrob. Chemother. 74, 22092213. https://doi.org/10.1093/jac/dkz193.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., Zhang, Y., Shen, Z., Xia, L., Wang, J., Zhao, L., Wang, K., Wang, W., Hao, Z. and Liu, Z. (2021): Characterization of NDM-1-producing carbapenemase in Proteus mirabilis among broilers in China. Microorganisms 9, 114. https://doi.org/10.3390/microorganisms9122443.

    • Search Google Scholar
    • Export Citation
  • Zunino, P., Geymonat, L., Allen, A. G., Legnani-Fajardo, C. and Maskell, D. J. (2000): Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol. Med. Microbiol. 29, 137142.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Author information is available in PDF.
Please, download the file from HERE.

The manuscript preparation instructions is available in PDF.
Please, download the file from HERE.

Senior editors

Editor-in-Chief: Ferenc BASKA

Editorial assistant: Szilvia PÁLINKÁS

 

Editorial Board

  • Mária BENKŐ (Acta Veterinaria Hungarica, Budapest, Hungary)
  • Gábor BODÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Béla DÉNES (University of Veterinary Medicine, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (National Agricultural Innovation Centre, Herceghalom, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • János GÁL (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Dušan PALIĆ (Ludwig Maximilian University, Munich, Germany)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 287 7073 (ed.-in-chief) or (36 1) 467 4081 (editor)

E-mail: acta.veterinaria@univet.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2022  
Web of Science  
Total Cites
WoS
972
Journal Impact Factor 0.900
Rank by Impact Factor

Veterinary Sciences 95/143

Impact Factor
without
Journal Self Cites
0.900
5 Year
Impact Factor
1.1
Journal Citation Indicator 0.47
Rank by Journal Citation Indicator

Veterinary Sciences 103/170

Scimago  
Scimago
H-index
38
Scimago
Journal Rank
0.277
Scimago Quartile Score

Veterinary (miscellaneous) Q2

Scopus  
Scopus
Cite Score
1.9
Scopus
CIte Score Rank
General Veterinary 76/186 (59th PCTL)
Scopus
SNIP
0.475

2021  
Web of Science  
Total Cites
WoS
1040
Journal Impact Factor 0,959
Rank by Impact Factor Veterinary Sciences 103/144
Impact Factor
without
Journal Self Cites
0,876
5 Year
Impact Factor
1,222
Journal Citation Indicator 0,48
Rank by Journal Citation Indicator Veterinary Sciences 106/168
Scimago  
Scimago
H-index
36
Scimago
Journal Rank
0,313
Scimago Quartile Score Veterinary (miscellaneous) (Q2)
Scopus  
Scopus
Cite Score
1,7
Scopus
CIte Score Rank
General Veterinary 79/183 (Q2)
Scopus
SNIP
0,610

2020  
Total Cites 987
WoS
Journal
Impact Factor
0,955
Rank by Veterinary Sciences 101/146 (Q3)
Impact Factor  
Impact Factor 0,920
without
Journal Self Cites
5 Year 1,164
Impact Factor
Journal  0,57
Citation Indicator  
Rank by Journal  Veterinary Sciences 93/166 (Q3)
Citation Indicator   
Citable 49
Items
Total 49
Articles
Total 0
Reviews
Scimago 33
H-index
Scimago 0,395
Journal Rank
Scimago Veterinary (miscellaneous) Q2
Quartile Score  
Scopus 355/217=1,6
Scite Score  
Scopus General Veterinary 73/183 (Q2)
Scite Score Rank  
Scopus 0,565
SNIP  
Days from  145
submission  
to acceptance  
Days from  150
acceptance  
to publication  
Acceptance 19%
Rate

 

2019  
Total Cites
WoS
798
Impact Factor 0,991
Impact Factor
without
Journal Self Cites
0,897
5 Year
Impact Factor
1,092
Immediacy
Index
0,119
Citable
Items
59
Total
Articles
59
Total
Reviews
0
Cited
Half-Life
9,1
Citing
Half-Life
9,2
Eigenfactor
Score
0,00080
Article Influence
Score
0,253
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,09791
Average
IF
Percentile
42,606
Scimago
H-index
32
Scimago
Journal Rank
0,372
Scopus
Scite Score
335/213=1,6
Scopus
Scite Score Rank
General Veterinary 62/178 (Q2)
Scopus
SNIP
0,634
Acceptance
Rate
18%

 

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 732 EUR / 892 USD
Print + online subscription: 848 EUR / 1028 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 346 11 13
May 2024 92 4 5
Jun 2024 0 0 0