Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.
Ahn, J. Y., Ann, H. W., Jeon, Y., Ahn, M. Y., Oh, D. H., Kim, Y. C., Kim, E. J, Song J. E., Jung, I. Y., Kim, M. H., Jeong W., Ku, N. S., Jeong, S. J., Choi J. Y., Yong, D., Song, Y. G. and Kim, J. M. (2017): The impact of production of extended-spectrum beta-lactamases on the 28-day mortality rate of patients with Proteus mirabilis bacteremia in Korea. BMC Infect. Dis. 17, 1–10. https://doi.org/10.1186/s12879-017-2431-8.
Aurilio, C., Sansone, P., Barbarisi, M., Pota, V., Giaccari, L. G., Coppolino, F., Barbarisi, A., Passavanti, M. B. and Pace, M. C. (2022): Mechanisms of action of carbapenem resistance. Antibiotics 11, 1–8. https://doi.org/10.3390/antibiotics11030421.
Barbour, E. K., Hajj, Z. G., Hamadeh, S., Shaib, H. A., Farran, M. T., Araj, G., Faroon, O., Barbour, K. E., Jirjis, F., Azhar, E., Kumosani T. and Harakeh, S. (2012): Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. Pathog. Glob. Health 106, 352–357. https://doi.org/10.1179/2047773212Y.0000000042.
Bauer, A. W., Perry, D. M. and Kirby, W. M. (1959): Single disc antibiotic sensitivity testing of Staphylococci; an analysis of technique and results Achi. Intern. Med. Res. 104, 208–216.
Bonnet, R., Sampaio, J. L. M., Labia, R., De Champs, C., Sirot, D., Chanal, C. and Sirot, J. (2000): A novel CTX-M beta-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil. Antimicrob. Agents Chemother. 44, 1936–1942.
Carlson, S. A., Bolton, L. F., Briggs, C. E., Hurd, H. S., Sharma, V. K., Fedorka-Cray, P. J. and Jones, B. D. (1999): Detection of multiresistant Salmonella Typhimurium DT104 using multiplex and fluorogenic PCR. Mol. Cell Probes. 13, 213–222.
Cestari, S. E., Ludovico, M. S., Martins, F. H., De Rocha, S. P. D., Elias, W. P. and Pelayo, J. S. (2013): Molecular detection of hpmA and hlyA hemolysin of uropathogenic Proteus mirabilis. Curr. Microbiol. 67, 703–707. https://doi.org/10.1007/s00284-013-0423-5.
Chen, S., Zhao, S., White, D. G., Schroeder, C. M., Lu, R., Yang, H., McDermott, P. F., Ayers, S. and Meng, J. (2004): Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 70, 1–7. https://doi.org/10.1128/AEM.70.1.1–7.2004.
Cherak, Z., Loucif, L., Moussi, A. and Rolain, J. M. (2021): Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J. Glob. Antimicrob. Resist. 25, 287–309. https://doi.org/10.1016/j.jgar.2021.03.024.
CLSI, (2017): Performance standards for antimicrobial susceptibility testing. In M100 (Wayne, USA).
Doyle, D., Peirano, G., Lascols, C., Lloyd, T., Church, D. L. and Pitout, J. D. D. (2012): Laboratory detection of Enterobacteriaceae that produce carbapenemases. J. Clin. Microbiol. 50, 3877–3880. https://doi.org/10.1128/JCM.02117-12.
Eibach, D., Dekker, D, Boahen, K. G., Akenten, C. W., Sarpong, N., Campos, C. B., Berneking, L., Aepfelbacher, M., Krumkamp, R., Owusu-Dabo, E. and May, J. (2018): Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet. Microbiol. 217, 7–12. https://doi.org/10.1016/j.vetmic.2018.02.023.
El-Demerdash, A. S., Aggour, M. G., El Azzouny, M. M. and Khadra, S. H. A. (2018): Molecular analysis of integron gene cassette arrays associated multi-drug resistant Enterobacteriaceae isolates from poultry. Cell Mol. Biol. 64, 149–156. http://doi.org/10.14715/cmb/2018.64.5.25.
Guerri, M. L. Aladuena, A., Echeita, A. and Rotger, R. (2004): Detection of integrons and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium isolates with resistance to ampicillin and variable susceptibility to amoxicillin-clavulanate. Int. J. Antimicrob. Agents 24, 327–333. https://doi.org/10.1016/j.ijantimicag.2004.04.009.
Guo, S., Aung, K. T., Tay, M. Y. F., Seow, K. L. G., Ng, L. C. and Schlundt, J. (2019): Extended-spectrum beta-lactamase-producing Proteus mirabilis with multidrug resistance isolated from raw chicken in Singapore: Genotypic and phenotypic analysis. J. Glob. Antimicrob. Resist. 19, 252–254. http://doi.org/10.1016/j.jgar.2019.10.013.
Gür, D. (2004): General Characteristics of ESBLs and ESBL Types, New and Reemerging Infections (ESBL’lerin genel özellikleri ve ESBL tipleri, yeni ve yeniden gündeme gelen infeksiyonlar In Turkish). Bilimsel Tıp Yayınevi, Ankara, pp. 5–13.
Haeili, M., Salehzeinali, H., Mirzaei, S., Pishnian, Z. and Ahmadi, A. (2022): Molecular characterization of quinolone resistance and antimicrobial resistance profiles of Klebsiella pneumoniae and Escherichia coli isolated from human and broiler chickens. Int. J. Environ. Health Res. 32, 1382–1392. http://doi.org/10.1080/09603123.2021.1885632.
Himpsl, S. D., Pearson, M. M., Arewang, C. J., Nusca, T. D., Sherman, D. H. and Mobley, H. L. (2010): Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol. Microbiol. 78, 138–157. http://doi.org/10.1111/j.1365-2958.2010.07317.x.
Ishaq, K. Ahmad, A., Rafique, A., Aslam, R., Ali, S., Shahid, M. A., Sarwar N., Aslam, M. A., Aslam, B. and Arshad, M. I. (2022): Occurrence and antimicrobial susceptibility of Proteus mirabilis from chicken carcass. Pak. Vet. J. 42, 576–579. http://doi.org/10.29261/pakvetj/2022.026.
Jabeen, K., Zafar, A. and Hasan, R. (2003): Comparison of double disc and combined disc method for the detection of extended spectrum beta lactamases in Enterobacteriaceae. J. Pak. Med. Assoc. 53, 534–536.
Khoramian, B., Jabalameli, F., Niasari-Naslaji, A., Taherikalani, M. and Emaneini, M. (2015): Comparison of virulence factors and biofilm formation among Staphylococcus aureus strains isolated from human and bovine infections. Microb. Pathog. 88, 73–77. http://doi.org/10.1016/j.micpath.2015.08.007.
Kluytmans, J. A. J. W., Overdevest, I. T. M. A., Willemsen, I., Kluytmans-van den Bergh, M. F. Q., van der Zwaluw, K., Heck, M., Rijnsburger, M., Vandenbroucke-Grauls C. M. J. E., Savelkoul, P. H. M., Johnston, B. D., Gordon, D. and Johnson J. R. (2013): Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 56, 478–487. http://doi.org/10.1093/cid/cis929.
Lapierre, L. Cornejo, J., Zavala, S., Galarce, N., Sánchez, F., Benavides, M. B., Guzmán, M. and Sáenz, L. (2020): Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: first findings in Chile. Animals 10, 1–15. http://doi.org/10.3390/ani10061049.
Leverstein-van Hall, M. A., Dierikx, C. M., Cohen Stuart, J., Voets, G. M., van den Munckhof, M. P., van Essen-Zandbergen, A., Platteel, T., Fluit, A. C., van de Sande-Bruinsma, N., Scharinga, J., Bonten, M. J. M., Mevius, D. J. and The national ESBL surveillance group. (2011): Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infec. 17, 873–880. http://doi.org/10.1111/j.1469-0691.2011.03497.x.
Li, S., Guo, F. Z., Zhao, X. J., Wang, Q., Wang, H., An, Y. Z. and Zhu, F. X. (2019): Impact of individualized active surveillance of carbapenem-resistant enterobacteriaceae on the infection rate in intensive care units: a 3-year retrospective study in a teaching hospital of People's Republic of China. Infect. Drug Resist. 12, 1407–1414. http://doi.org/10.2147/IDR.S201644.
Li, Z., Peng, C., Zhang, G., Shen, Y., Zhang, Y., Liu, C., Liu, M. and Wang, F. (2022): Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poult. Sci. 101, 1–7. https://doi.org/10.1016/j.psj.2022.101710.
Lim, E. J., Ho, S. X., Cao, D. Y., Lau, Q. C., Koh, T. H. and Hsu, L. Y. (2016): Extended-spectrum beta-lactamase-producing Enterobacteriaceae in retail chicken meat in Singapore. Ann. Acad. Med. Singap. 45, 557–559.
Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H. and Shen, J. (2016): Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168. http://doi.org/10.1016/S1473-3099(15)00424-7.
Ma, S., Shen, J., Xu, Y., Ding, P., Gao, X., Pan, Y., Wu, H., Hu, G. and He, D. (2023): Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult. Sci. 102, 1–8. https://doi.org/10.1016/j.psj.2023.102640.
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T. and Monnet, D. L. (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Markey, B., Leonard, F., Archambault, M., Cullinane, A. and Maguire, D. (2013): Clinical Veterinary Microbiology, 2nd edn. Mosby Elsevier, Dublin, 239–274.
Moawad, A. A., Hotzel, H., Neubauer, H., Ehricht, R., Monecke, S., Tomaso, H., Hafez, H. M., Roesler, U. and El-Adawy, H. (2018): Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum beta-lactamase-producing Escherichia coli. Gut Pathog. 10, 1–12. https://doi.org/10.1186/s13099-018-0266-5.
Mora, A., Herrera, A., Mamani, R., Lopez, C., Alonso, M. P., Blanco, J. E., Blanco, M., Dahbi, G., Garcia-Garrote, F., Pita, J. M., Coira, A., Bernardez, M. I. and Blanco, J. (2010): Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl. Environ. Microbiol. 76, 6991–6997. https://doi.org/10.1128/AEM.01112-10.
Olsen, R. H., Bisgaard, M., Löhren, U., Robineau, B. and Christensen, H. (2014): Extended-spectrum beta-lactamase-producing Escherichia coli isolated from poultry: a review of current problems, illustrated with some laboratory findings. Avian Pathol. 43, 199–208. https://doi.org/10.1080/03079457.2014.907866.
Öcal, D. (2012): Gram negatif bakterilerde antibakteriyal direncin fenotipik yöntemler ile tayin ve bildirimi. Ankem Derg. 26, 154–164. https://doi.org/10.5222/ankem.2012.154.
Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D. and Hooper, D. C. (2006): Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50, 3953–3955. https://doi.org/10.1128/AAC.00915-06.
Rebelo, A. R., Bortolaia, V., Kjeldgaard, J. S., Pedersen, S. K., Leekitcharoenphon, P., Hansen, I. M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J. A., Battisti, A., Franco A., Alba, P., Perrin-Guyomard, A., Granier, S. A., Escobar, C. D. F., Malhotra-Kumar, S., Villa, L., Carattoli, A. and Hendriksen, R. S. (2018): Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 23, 1–11.
Ripabelli, G., Salzo, A., Mariano, A., Sammarco, M. L., Tamburro, M. and Collaborative Group for HAIs Point Prevalence Surveys in Molise Region (2019): Healthcare-associated infections point prevalence survey and antimicrobials use in acute care hospitals (PPS 2016–2017) and long-term care facilities (HALT-3): a comprehensive report of the first experience in Molise Region, Central Italy, and targeted intervention strategies. J. Infect. Public Health 12, 509–515. https://doi.org/10.1016/j.jiph.2019.01.060.
Robicsek, A., Strahilevitz, J., Jacoby, G. A., Macielag, M., Abbanat, D., Park, C. H., Bush, K. and Hooper, D. C. (2006a): Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83–88. https://doi.org/10.1038/nm1347.
Robicsek, A., Strahilevitz, J., Sahm, D. F., Jacoby, G. A. and Hooper, D. C. (2006b): qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother 50, 2872–2874. https://doi.org/10.1128/AAC.01647-05.
Rocha, S. P. D., Elias, W. P., Cianciarullo, A. M., Menezes, M. A., Nara, J. M., Piazza, R. M. F., Silva, M. R. L., Moreira, C. G. and Pelayo, J. S. (2007): Aggregative adherence of uropathogenic Proteus mirabilis to cultured epithelial cells. FEMS Immunol. Med. Microbiol. 51, 319–326. https://doi.org/10.1111/j.1574-695X.2007.00308.x.
Sanches, M. S., Baptista, A. A. S., De Souza, M., Menck-Costa, M. F., Koga, V. L., Kobayashi, R. K. T. and Rocha, S. P. D. (2019): Genotypic and phenotypic profiles of virulence factors and antimicrobial resistance of Proteus mirabilis isolated from chicken carcasses: potential zoonotic risk. Braz. J. Microbiol. 50, 685–694. https://doi.org/10.1007/s42770-019-00086-2.
Su, Y., Xin, L., Zhang, F., Peng, C., Li, Z., Liu, C. and Wang, F. (2023): Drug resistance analysis of three types of avian-origin carbapenem-resistant Enterobacteriaceae in Shandong Province, China. Poult. Sci. 102. https://doi.org/10.1016/j.psj.2023.102483.
Sun, Y., Wen, S., Zhao, L., Xia, Q., Pan, Y., Liu, H., Wei, C., Chen, H., Ge, J. and Wang, H. (2020): Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet. Res. 16, 1–10. https://doi.org/10.1186/s12917-020-02372-w.
Talebi, A., Momtaz, H. and Tajbakhsh, E. (2023): Frequency distribution of virulence factors and antibiotic resistance genes in uropathogenic Proteus species isolated from clinical samples. Lett. Appl. Microbiol. 76, 1–8. https://doi.org/10.1093/lambio/ovac043.
Weill, F. X., Demartin, M., Tande, D., Espie, E., Rakotoarivony, I. and Grimont, P. A. D. (2004): SHV-12-like extended-spectrum-beta-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. J. Clin. Microbiol. 42, 2432–2437. https://doi.org/10.1128/JCM.42.6.2432–2437.2004.
WHO (2014): Antimicrobial Resistance: Global Report on Surveillance, 1–19.
Wong, M. H. Y., Wan, H. Y. and Chen, S. (2013): Characterization of multidrug-resistant Proteus mirabilis isolated from chicken carcasses. Foodborne Pathog. Dis. 10, 177–181. https://doi.org/10.1089/fpd.2012.1303.
Yeh, H. Y., Line, J. E. and Hinton, A. (2018): Molecular analysis, biochemical characterization, antimicrobial activity, and immunological analysis of Proteus mirabilis isolated from broilers. J. Food Sci. 83, 770–779. https://doi.org/10.1111/1750-3841.14056.
Yu, Z., Joossens, M., Van de Abele, A. M., Kerkhof, P. J. and Houf, K. (2021): Isolation, characterization and antibiotic resistance of Proteus mirabilis from Belgian broiler carcasses at retail and human stool. Food Microbiol. 96, 1–9. https://doi.org/10.1016/j.fm.2020.103724.
Zhai, R., Fu, B., Shi, X., Sun, C., Liu, Z., Wang, S., Shen, Z., Walsh, T. R., Cai, C., Wang, Y. and Wu, C. (2020): Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environ. Int. 139, 1–11. https://doi.org/10.1016/j.envint.2020.105715.
Zhang, R., Li, J., Wang, Y., Shen, J., Shen, Z. and Wang, S. (2019): Presence of NDM in non-E. coli Enterobacteriaceae in the poultry production environment. J. Antimicrob. Chemother. 74, 2209–2213. https://doi.org/10.1093/jac/dkz193.
Zhu, X., Zhang, Y., Shen, Z., Xia, L., Wang, J., Zhao, L., Wang, K., Wang, W., Hao, Z. and Liu, Z. (2021): Characterization of NDM-1-producing carbapenemase in Proteus mirabilis among broilers in China. Microorganisms 9, 1–14. https://doi.org/10.3390/microorganisms9122443.
Zunino, P., Geymonat, L., Allen, A. G., Legnani-Fajardo, C. and Maskell, D. J. (2000): Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol. Med. Microbiol. 29, 137–142.