This interventional clinical trial aimed to assess the potential impact of Spirulina platensis supplementation on pregnant and lactating ewes living in a Moroccan endemic fluorosis area. Forty-eight ewes were divided into four equal groups: Groups I and II served as controls belonging respectively to fluorosis-free and endemic fluorosis areas, Groups III and IV received respectively 250 and 500 mg*kg−1 BW/day of S. platensis, during late pregnancy and early lactation. The results revealed that ewes reared in fluorosis-free areas exhibited significantly lower plasma fluoride and significantly higher haemoglobin levels compared to endemic fluorosis areas (P < 0.0001). However, supplementation with 500 mg*kg−1 BW*day−1 of S. platensis significantly improved these two parameters compared to Group II (P < 0.0001). Ewes in the endemic area also displayed increased oxidative stress (P < 0.05), characterized by decreased ascorbic acid levels and catalase activity, as well as elevated levels of reduced glutathione and malondialdehyde. Supplementation with 500 mg*kg−1 BW*day−1 of S. platensis enhanced the antioxidant status (P < 0.05) by increasing ascorbic acid levels and catalase activity and decreasing levels of reduced glutathione and malondialdehyde. Moreover, this dose yielded similar average daily gains compared to lambs of ewes living in fluorosis-free area. In conclusion, S. platensis may serve as a promising solution for addressing endemic fluorosis in pregnant and lactating ewes.
Abbas, M., Siddiqi, M. H., Khan, K., Zahra, K. and Naqvi, A. N. (2017): Haematological evaluation of sodium fluoride toxicity in oryctolagus cunniculus. Toxicol. Rep. 4, 450–454. https://doi.org/10.1016/j.toxrep.2017.07.002.
Abdel-Rahman, G. H., El-Hallawany, H. A. and Ra, D. (2018): Effect of excess fluoride on reproductive potentials in farm animals (ovine). Alex. J. Vet. Sci. 57, 41–57. http://dx.doi.org/10.5455/ajvs.296364.
Ahmad, K. R., Kanwal, M. A., Raees, K. and Abbas, T. (2015): Strawberry fruit extract ameliorates pregnancy and feto-gestational effects of sodium fluoride exposure in mice. Fluoride 48, 62–68.
Aissaoui, O., Amiali, M., Bouzid, N., Belkacemi, K. and Bitam, A. (2017): Effect of Spirulina platensis ingestion on the abnormal biochemical and oxidative stress parameters in the pancreas and liver of alloxan-induced diabetic rats. Pharm. Biol. 55, 1304–1312. https://doi.org/10.1080/13880209.2017.1300820.
Ammerman, C. B., Henry, P. R., Conrad, J. H., Fick, K. R. and Araujo, E. C. (1980): Inappetence in ruminants as a measure of fluoride solubility in various phosphates. J. Dairy Sci. 63, 1167–1171. https://doi.org/10.3168/jds.S0022-0302(80)83062-1.
Balasubramaniam, P. and Malathi, A. (1992): Comparative study of hemoglobin estimated by Drabkin’s and Sahli’s methods. J. Postgrad. Med. 38, 8–9.
Banji, D., Banji, O. J. F., Pratusha, N. G. and Annamalai, A. R. (2013): Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food. Chem. 140, 321–331. https://doi.org/10.1016/j.foodchem.2013.02.076.
Basha, P. M. and Madhusudhan, N. (2010): Pre and post natal exposure of fluoride induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants. Neurochem. Res. 35, 1017–1028. https://doi.org/10.1007/s11064-010-0150-2.
Beyer Jr, W. F. and Fridovich, I. (1987): Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161, 559–566. https://doi.org/10.1016/0003-2697(87)90489-1.
Boujenane, I., M'zian, S. and Sadik, M. (2001): Estimation des paramètres génétiques et phénotypiques de la croissance des ovins de race Sardi. Rev. Mar. Sci. Agr. Vét. 21(3), 177–183.
Chikhi, A. and Boujenane I. (2003): Caractérisation zootechnique des ovins de race Sardi au Maroc. Rev. Elevage. Méd. Vét. Pays. Trop. 56, 187–192.
Cronin, S. J., Hedley, M. J., Neall, V. E. and Smith, R. G. (1998): Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu volcanic eruptions, New Zealand. Environ. Geol. 34: 21–30. https://doi.org/10.1007/s002540050253.
Efe, U., Dede, S., Yüksek, V. and Çetin, S. (2021): Apoptotic and oxidative mechanisms in liver and kidney tissues of sheep with fluorosis. Biol. Trace. Elem. Res. 199, 136–141. https://doi.org/10.1007/s12011-020-02121-y.
El-Deeb, M. M., Abdel-Gawad, M., Abdel-Hafez, M. A. M., Saba, F. E. and Ibrahim, E. M. M. (2022): Effect of adding Spirulina platensis algae to small ruminant rations on productive, reproductive traits and some blood components. Acta. Sci., Anim. Sci. 45, e57546. https://doi.org/10.4025/actascianimsci.v45i1.57546.
El-Far, A. H., Mahfouz, M. K. and Abdel Maksoud, H. A. (2010): Biochemical changes in glutathione redox system and glucose regulation in late pregnant Ossimi ewes. Am. J. Sci. 6, 953–959.
Ellman, G. L. (1959): Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77. https://doi.org/10.1016/0003-9861(59)90090-6.
El-Sabagh, M. R., Abd Eldaim, M. A., Mahboub, D. H. and Abdel-Daim, M. (2014): Effects of Spirulina platensis algae on growth performance, antioxidative status and blood metabolites in fattening lambs. J. Agric. Sci. 6, 92. https://doi.org/10.5539/JAS.V6N3P92.
El-Sherif, M. M. A. and Assad, F. (2001): Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small. Rumin. Res. 40, 269–277. https://doi.org/10.1016/s0921-4488(01)00174-2.
Ferreira, M. K. M., Aragão, W. A. B., Bittencourt, L. O., Puty, B., Dionizio, A., Souza, M. P. C. de, Buzalaf, M. A. R., de Oliveira, E. H., Crespo-Lopez, M. E. and Lima, R. R. (2021): Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats. Ecotoxicol. Environ. Saf. 208, 111437. https://doi.org/10.1016/j.ecoenv.2020.111437.
Goyal, L. D., Bakshi, D. K., Arora, J. K., Manchanda, A. and Singh, P. (2020): Assessment of fluoride levels during pregnancy and its association with early adverse pregnancy outcomes. Fam. Med. Prim. Care. Rev. 9, 2693. https://doi.org/10.4103/jfmpc.jfmpc_213_20.
Jagota, S. K. and Dani, H. M. (1982): A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 127, 178–182.
Kanagaraj, V. V., Panneerselvam, L., Govindarajan, V., Ameeramja, J. and Perumal, E. (2015): Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: a possible mechanism. Biofactors. 41, 90–100. https://doi.org/10.1002/biof.1203.
Kurdi, M. S. (2016): Chronic fluorosis: the disease and its anaesthetic implications. Indian. J. Anaesth. 60, 157–162. https://doi.org/10.4103/0019-5049.177867.
Liang, Z. (2012): Ameliorative efect of protein and calcium on fuoride-induced hepatotoxicity in rabbits. Afr. J. Biotechnol. 11, 13801–13808. https:/http://doi.org/10.5897/AJB12.1761.
Liang, Y., Bao, Y., Gao, X., Deng, K., An, S., Wang, Z., Huang, X., Liu, D., Liu, Z., Wang, F. and Fan, Y. (2020): Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat. Sci. 164, 108094. https://doi.org/10.1016/j.meatsci.2020.108094.
Liu, J., Yang, S., Luo, M. J., Zhao, X., Zhang, Y. M. and Luo, Y. (2018): Association of dietary carotenoids intake with skeletal fluorosis in the coal-burning fluorosis area of Guizhou Province. Biomed. Environ. Sci. 31, 438–447. https://doi.org/10.3967/bes2018.057.
Lohakare, J. and Pattanaik, A. K. (2013): Effects of addition of fluorine in diets differing in protein content on urinary fluoride excretion, clinical chemistry and thyroid hormones in calves. R. Bras. Zootec. 42, 751–758. https://doi.org/10.1590/S1516-35982013001000009.
Lopes, G. O., Martins Ferreira, M. K., Davis, L., Bittencourt, L. O., Bragança Aragão, W. A., Dionizio, A., Rabelo Buzalaf, M. A., Crespo-Lopez, M. E., Maia, C. S. F. and Lima, R. R. (2020): Effects of fluoride long-term exposure over the cerebellum: global proteomic profile, oxidative biochemistry, cell density, and motor behavior evaluation. Int. J. Mol. Sci. 21, 7297. https://doi.org/10.3390/ijms21197297.
Maheshwari, N., Qasim, N., Anjum, R. and Mahmood, R. (2021): Fluoride enhances generation of reactive oxygen and nitrogen species, oxidizes hemoglobin, lowers antioxidant power and inhibits transmembrane electron transport in isolated human red blood cells. Ecotoxicol. Environ. Saf. 208, 111611. https://doi.org/10.1016/j.ecoenv.2020.111611.
Malik, A., Fazili, M., Khatun, A., Rather, M., Khan, H. and Shah, R. (2018): Serum nitric oxide and ascorbic acid levels in pregnant and non-pregnant ewes during non-breeding season. J. Entomol. Zool. Stud. 6(2), 157–159. https://doi.org/10.22271/j.ento.
Michael, A., Kyewalyanga, M. S. and Lugomela, C. V. (2019): Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann. Microbiol. 69, 1387–1395. https://doi.org/10.1007/s13213-019-01520-4.
Nabavi, S. F., Nabavi, S. M., Habtemariam, S., Moghaddam, A. H., Sureda, A., Jafari, M. and Latifi, A. M. (2013): Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Ind. Crops. Prod. 44, 50–55. https://doi.org/10.1016/j.indcrop.2012.10.024.
Ni, J., Sasaki, Y., Tokuyama, S., Sogabe, A. and Tahara, Y. (2002): Conversion of a typical catalase from Bacillus sp. TE124 to a catalase-peroxidase by directed evolution. J. Biosci. Bioeng. 93, 31–36. https://doi.org/10.1016/S1389-1723(02)80050-0.
Ohkawa, H., Ohishi, N. and Yagi, K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358. https://doi.org/10.1016/0003-2697(79)90738-3.
Ola-Davies, O. E. (2018): Ameliorative effect of gallic acid against sodium fluoride-induced hypertension and hepato-renal complications in Wistar rats. Egypt. J. Aquat. 21, 285–294. https://doi.org/10.4314/ajbr.v21i3.
O'Hara, P. J. and Cordes, D. O. (1982): Superphosphate poisoning of sheep: a study of natural outbreaks. New. Zeal. Vet. J. 30, 153–155. https://doi.org/10.1080/00480169.1982.34920.
Rahim, A., Aydogmus-Öztürk, F., Cakir, C., Essamadi, A. and El Amiri, B. (2022a): Mitigating fluoride, lead, arsenic and cadmium toxicities in laboratory animals and ruminants through natural products. Rec. Agric. Food. Chem. 2, 1–17. http://doi.org/10.25135/rfac.6.2202.2365.
Rahim, A., Çakir, C., Ozturk, M., Şahin, B., Soulaimani, A., Sibaoueih, M., Nasser, B., Eddoha, R., Essamadi, A. and El Amiri, B. (2021): Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). S. Afr. J. Bot. 141, 235–242. https://doi.org/10.1016/j.sajb.2021.05.006.
Rahim, A. and El Amiri, B. (2023): Effects of heat stress and chemical pollutants on sheep reproduction and strategies to mitigate them, in: Mabrouki, J., Mourade, A., Irshad, A. and Chaudhry, S.A. (Eds.), Advanced Technology for Smart Environment and Energy, Environmental Science and Engineering. Springer International Publishing, Cham, pp. 173–185. https://doi.org/10.1007/978-3-031-25662-2_15.
Rahim, A., Essamadi, A. and El Amiri, B. (2023a): Endemic fluorosis in ruminants and its socioeconomic impact in Morocco. Afr. Medit. Agric. J. 138, 77–95. https://doi.org/10.34874/IMIST.PRSM/afrimed-i138.39131.
Rahim, A., Essamadi, A. and El Amiri, B. (2022b): A comprehensive review on endemic and experimental fluorosis in sheep: its diverse effects and prevention. Toxicology 465, 153025. https://doi.org/10.1016/j.tox.2021.153025.
Rahim, A., Sibaoueih, M., Essamadi, A. and El Amiri, B. (2023b): An interventional clinical trial investigating the effects of Spirulina platensis on dental fluorosis and antioxidant system in lambs reared in endemic areas. Sci. Rep. 13, 16858. https://doi.org/10.1038/s41598-023-44058-x.
Rios, T. S., Esqueda, M. T. S.-T., Cruz, A. D., Mora, J. L. C., Perrusquía, R. G., Morales, J. L. R., Velasco, J. L. F. and Bautista, J. H. (2017): Oxidative state of ewes with different number of parity during gestation and lactation. Pesq. Vet. Bras. 37, 1405–1410. https://doi.org/10.1590/S0100-736X2017001200008.
Said, A. N., Slagsvold, P., Bergh, H. and Laksesvela, B. (1977): High fluorine water to whether sheep maintained in pens. Aluminum chloride as a possible alleviator of fluorosis. Nord Vet. Med. 29, 172–180.
Samal, P., Patra, R. C., Gupta, A. R., Mishra, S. K., Jena, D. and Satapathy, D. (2016): Effect of Tamarindus indica leaf powder on plasma concentrations of copper, zinc, and iron in fluorotic cows. Vet. World 9, 1121.
Shanks, D. (1997): Clinical implications of volcanic eruptions on livestock - case studies following the 1995 and 1996 eruptions of Mt. Ruapehu. Proceedings of the 27th Seminar of the Society of Sheep and Beef Cattle Veterinarians. N. Zeal. Vet. J. 175, 1–13.
Sherlin, D. G. and Verma, R. J. (2001): Vitamin D ameliorates fluoride-induced embryotoxicity in pregnant rats. Neurotoxicol. Teratol. 23, 197–201. https://doi.org/10.1016/S0892-0362(00)00123-9.
Sibiya, T., Ghazi, T., Mohan, J., Nagiah, S. and Chuturgoon, A. A. (2022): Spirulina platensis ameliorates oxidative stress associated with antiretroviral drugs in hepg2 cells. Plants 11, 3143. https://doi.org/10.3390/plants11223143.
Soni, B., Trivedi, U. and Madamwar, D. (2008): A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour. Technol. 1, 188–194. https://doi.org/10.1016/j.biortech.2006.11.010.
Stahl, W. and Sies, H. (1996): Lycopene: a biologically important carotenoid for humans? Arch. Biochem. Biophys. 336, 1–9. https://doi.org/10.1006/abbi.1996.0525.
Sun, Z., Zhang, Y., Xue, X., Niu, R. and Wang, J. (2018): Maternal fluoride exposure during gestation and lactation decreased learning and memory ability, and glutamate receptor mRNA expressions of mouse pups. Hum. Exp. Toxicol. 37, 87–93. https://doi.org/10.1177/0960327117693067.
Susheela, A. K., Mondal, N. K., Gupta, R., Sethi, M. and Pandey, R. M. (2018): Fluorosis is linked to anaemia. Curr. Sci. 115, 692–700.
Trinh, D. V. and Nguyen, P. T. H. (2020): Minimising the cost of Spirulina platensis culture medium using Vinh Hao natural mineral water. Chem. Eng. Trans. 78, 19–24. https://doi.org/10.3303/CET2078004.
Ulemale, A. H., Kulkarni, M. D., Yadav, G. B., Samant, S. R., Komatwar, S. J. and Khanvilkar, A. V. (2010): Fluorosis in cattle. Vet. World. 3, 526–527.
Verma, R. J. and Sherlin, D. M. G. (2001): Vitamin C ameliorates fluoride-induced embryotoxicity in pregnant rats. Hum. Exp. Toxicol. 20, 619–623. https://doi.org/10.1191/096032701718890559.
Verma, R. J. and Sherlin, D. G. (2002a): Sodium fluoride-induced hypoproteinemia and hypoglycemia in parental and F1-generation rats and amelioration by vitamins. Food. Chem. Toxicol. 40, 1781–1788. https://doi.org/10.1016/S0278-6915(02)00170-9.
Verma, R. J. and Sherlin, D. G. (2002b): Hypocalcaemia in parental and F1 generation rats treated with sodium fluoride. Food. Chem. Toxicol. 40, 551–554. https://doi.org/10.1016/S0278-6915(01)00100-4.
Vonnahme, K. A., Wilson, M. E., Li, Y., Rupnow, H. L., Phernetton, T. M., Ford, S. P. and Magness, R. R. (2005): Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy. Physiol. J. 565, 101–109. https://doi.org/10.1113/jphysiol.2004.082321.
Walallawita, U. S., Wolber, F. M., Ziv-Gal, A., Kruger, M. C. and Heyes, J. A. (2020): Potential role of lycopene in the prevention of postmenopausal bone loss: evidence from molecular to clinical studies. Int. J. Mol. Sci. 21(19), 7119. https://doi.org/10.3390/ijms21197119.
Wheeler, S. M., Brock, T. B. and Teasdale, D. (1985): Effects of added 30 mg fluoride/1 drinking water given to pregnant ewes and their lambs upon physiology and wool growth. J. Agric. Sci. 105, 715–726. https://doi.org/10.1017/S0021859600059633.
Wu, S., Wang, Y., Iqbal, M., Mehmood, K., Li, Y., Tang, Z. and Zhang, H. (2022): Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity–a review. Environ. Pollut. 304, 119241. https://doi.org/10.1016/j.envpol.2022.119241.
Yildiz, M. and Oral, B. (2006): The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats. Toxicol. Ind. Health. 22, 217–222. https://doi.org/10.1191/0748233706th258oa.