Authors:
Abdellatif Rahim Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090 Rabat, Morocco
Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan First University of Settat, P.O. Box 577, 26000 Settat, Morocco

Search for other papers by Abdellatif Rahim in
Current site
Google Scholar
PubMed
Close
,
Mounia Sibaoueih Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090 Rabat, Morocco

Search for other papers by Mounia Sibaoueih in
Current site
Google Scholar
PubMed
Close
,
Abderrahman Moujahid Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan First University of Settat, P.O. Box 577, 26000 Settat, Morocco

Search for other papers by Abderrahman Moujahid in
Current site
Google Scholar
PubMed
Close
,
Abdelkhalid Essamadi Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan First University of Settat, P.O. Box 577, 26000 Settat, Morocco

Search for other papers by Abdelkhalid Essamadi in
Current site
Google Scholar
PubMed
Close
, and
Bouchra El Amiri Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090 Rabat, Morocco
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco

Search for other papers by Bouchra El Amiri in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3443-5988
Restricted access

Abstract

This interventional clinical trial aimed to assess the potential impact of Spirulina platensis supplementation on pregnant and lactating ewes living in a Moroccan endemic fluorosis area. Forty-eight ewes were divided into four equal groups: Groups I and II served as controls belonging respectively to fluorosis-free and endemic fluorosis areas, Groups III and IV received respectively 250 and 500 mg*kg−1 BW/day of S. platensis, during late pregnancy and early lactation. The results revealed that ewes reared in fluorosis-free areas exhibited significantly lower plasma fluoride and significantly higher haemoglobin levels compared to endemic fluorosis areas (P < 0.0001). However, supplementation with 500 mg*kg−1 BW*day−1 of S. platensis significantly improved these two parameters compared to Group II (P < 0.0001). Ewes in the endemic area also displayed increased oxidative stress (P < 0.05), characterized by decreased ascorbic acid levels and catalase activity, as well as elevated levels of reduced glutathione and malondialdehyde. Supplementation with 500 mg*kg−1 BW*day−1 of S. platensis enhanced the antioxidant status (P < 0.05) by increasing ascorbic acid levels and catalase activity and decreasing levels of reduced glutathione and malondialdehyde. Moreover, this dose yielded similar average daily gains compared to lambs of ewes living in fluorosis-free area. In conclusion, S. platensis may serve as a promising solution for addressing endemic fluorosis in pregnant and lactating ewes.

  • Abbas, M., Siddiqi, M. H., Khan, K., Zahra, K. and Naqvi, A. N. (2017): Haematological evaluation of sodium fluoride toxicity in oryctolagus cunniculus. Toxicol. Rep. 4, 450454. https://doi.org/10.1016/j.toxrep.2017.07.002.

    • Search Google Scholar
    • Export Citation
  • Abdel-Rahman, G. H., El-Hallawany, H. A. and Ra, D. (2018): Effect of excess fluoride on reproductive potentials in farm animals (ovine). Alex. J. Vet. Sci. 57, 4157. http://dx.doi.org/10.5455/ajvs.296364.

    • Search Google Scholar
    • Export Citation
  • Ahmad, K. R., Kanwal, M. A., Raees, K. and Abbas, T. (2015): Strawberry fruit extract ameliorates pregnancy and feto-gestational effects of sodium fluoride exposure in mice. Fluoride 48, 6268.

    • Search Google Scholar
    • Export Citation
  • Aissaoui, O., Amiali, M., Bouzid, N., Belkacemi, K. and Bitam, A. (2017): Effect of Spirulina platensis ingestion on the abnormal biochemical and oxidative stress parameters in the pancreas and liver of alloxan-induced diabetic rats. Pharm. Biol. 55, 13041312. https://doi.org/10.1080/13880209.2017.1300820.

    • Search Google Scholar
    • Export Citation
  • Ammerman, C. B., Henry, P. R., Conrad, J. H., Fick, K. R. and Araujo, E. C. (1980): Inappetence in ruminants as a measure of fluoride solubility in various phosphates. J. Dairy Sci. 63, 11671171. https://doi.org/10.3168/jds.S0022-0302(80)83062-1.

    • Search Google Scholar
    • Export Citation
  • Balasubramaniam, P. and Malathi, A. (1992): Comparative study of hemoglobin estimated by Drabkin’s and Sahli’s methods. J. Postgrad. Med. 38, 89.

    • Search Google Scholar
    • Export Citation
  • Banji, D., Banji, O. J. F., Pratusha, N. G. and Annamalai, A. R. (2013): Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food. Chem. 140, 321331. https://doi.org/10.1016/j.foodchem.2013.02.076.

    • Search Google Scholar
    • Export Citation
  • Basha, P. M. and Madhusudhan, N. (2010): Pre and post natal exposure of fluoride induced oxidative macromolecular alterations in developing central nervous system of rat and amelioration by antioxidants. Neurochem. Res. 35, 10171028. https://doi.org/10.1007/s11064-010-0150-2.

    • Search Google Scholar
    • Export Citation
  • Beyer Jr, W. F. and Fridovich, I. (1987): Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161, 559566. https://doi.org/10.1016/0003-2697(87)90489-1.

    • Search Google Scholar
    • Export Citation
  • Boujenane, I., M'zian, S. and Sadik, M. (2001): Estimation des paramètres génétiques et phénotypiques de la croissance des ovins de race Sardi. Rev. Mar. Sci. Agr. Vét. 21(3), 177183.

    • Search Google Scholar
    • Export Citation
  • Chikhi, A. and Boujenane I. (2003): Caractérisation zootechnique des ovins de race Sardi au Maroc. Rev. Elevage. Méd. Vét. Pays. Trop. 56, 187192.

    • Search Google Scholar
    • Export Citation
  • Cronin, S. J., Hedley, M. J., Neall, V. E. and Smith, R. G. (1998): Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu volcanic eruptions, New Zealand. Environ. Geol. 34: 2130. https://doi.org/10.1007/s002540050253.

    • Search Google Scholar
    • Export Citation
  • Efe, U., Dede, S., Yüksek, V. and Çetin, S. (2021): Apoptotic and oxidative mechanisms in liver and kidney tissues of sheep with fluorosis. Biol. Trace. Elem. Res. 199, 136141. https://doi.org/10.1007/s12011-020-02121-y.

    • Search Google Scholar
    • Export Citation
  • El-Deeb, M. M., Abdel-Gawad, M., Abdel-Hafez, M. A. M., Saba, F. E. and Ibrahim, E. M. M. (2022): Effect of adding Spirulina platensis algae to small ruminant rations on productive, reproductive traits and some blood components. Acta. Sci., Anim. Sci. 45, e57546. https://doi.org/10.4025/actascianimsci.v45i1.57546.

    • Search Google Scholar
    • Export Citation
  • El-Far, A. H., Mahfouz, M. K. and Abdel Maksoud, H. A. (2010): Biochemical changes in glutathione redox system and glucose regulation in late pregnant Ossimi ewes. Am. J. Sci. 6, 953959.

    • Search Google Scholar
    • Export Citation
  • Ellman, G. L. (1959): Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 7077. https://doi.org/10.1016/0003-9861(59)90090-6.

  • El-Sabagh, M. R., Abd Eldaim, M. A., Mahboub, D. H. and Abdel-Daim, M. (2014): Effects of Spirulina platensis algae on growth performance, antioxidative status and blood metabolites in fattening lambs. J. Agric. Sci. 6, 92. https://doi.org/10.5539/JAS.V6N3P92.

    • Search Google Scholar
    • Export Citation
  • El-Sherif, M. M. A. and Assad, F. (2001): Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small. Rumin. Res. 40, 269277. https://doi.org/10.1016/s0921-4488(01)00174-2.

    • Search Google Scholar
    • Export Citation
  • Ferreira, M. K. M., Aragão, W. A. B., Bittencourt, L. O., Puty, B., Dionizio, A., Souza, M. P. C. de, Buzalaf, M. A. R., de Oliveira, E. H., Crespo-Lopez, M. E. and Lima, R. R. (2021): Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats. Ecotoxicol. Environ. Saf. 208, 111437. https://doi.org/10.1016/j.ecoenv.2020.111437.

    • Search Google Scholar
    • Export Citation
  • Goyal, L. D., Bakshi, D. K., Arora, J. K., Manchanda, A. and Singh, P. (2020): Assessment of fluoride levels during pregnancy and its association with early adverse pregnancy outcomes. Fam. Med. Prim. Care. Rev. 9, 2693. https://doi.org/10.4103/jfmpc.jfmpc_213_20.

    • Search Google Scholar
    • Export Citation
  • Jagota, S. K. and Dani, H. M. (1982): A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 127, 178182.

    • Search Google Scholar
    • Export Citation
  • Kanagaraj, V. V., Panneerselvam, L., Govindarajan, V., Ameeramja, J. and Perumal, E. (2015): Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: a possible mechanism. Biofactors. 41, 90100. https://doi.org/10.1002/biof.1203.

    • Search Google Scholar
    • Export Citation
  • Kurdi, M. S. (2016): Chronic fluorosis: the disease and its anaesthetic implications. Indian. J. Anaesth. 60, 157162. https://doi.org/10.4103/0019-5049.177867.

    • Search Google Scholar
    • Export Citation
  • Liang, Z. (2012): Ameliorative efect of protein and calcium on fuoride-induced hepatotoxicity in rabbits. Afr. J. Biotechnol. 11, 1380113808. https:/http://doi.org/10.5897/AJB12.1761.

    • Search Google Scholar
    • Export Citation
  • Liang, Y., Bao, Y., Gao, X., Deng, K., An, S., Wang, Z., Huang, X., Liu, D., Liu, Z., Wang, F. and Fan, Y. (2020): Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat. Sci. 164, 108094. https://doi.org/10.1016/j.meatsci.2020.108094.

    • Search Google Scholar
    • Export Citation
  • Liu, J., Yang, S., Luo, M. J., Zhao, X., Zhang, Y. M. and Luo, Y. (2018): Association of dietary carotenoids intake with skeletal fluorosis in the coal-burning fluorosis area of Guizhou Province. Biomed. Environ. Sci. 31, 438447. https://doi.org/10.3967/bes2018.057.

    • Search Google Scholar
    • Export Citation
  • Lohakare, J. and Pattanaik, A. K. (2013): Effects of addition of fluorine in diets differing in protein content on urinary fluoride excretion, clinical chemistry and thyroid hormones in calves. R. Bras. Zootec. 42, 751758. https://doi.org/10.1590/S1516-35982013001000009.

    • Search Google Scholar
    • Export Citation
  • Lopes, G. O., Martins Ferreira, M. K., Davis, L., Bittencourt, L. O., Bragança Aragão, W. A., Dionizio, A., Rabelo Buzalaf, M. A., Crespo-Lopez, M. E., Maia, C. S. F. and Lima, R. R. (2020): Effects of fluoride long-term exposure over the cerebellum: global proteomic profile, oxidative biochemistry, cell density, and motor behavior evaluation. Int. J. Mol. Sci. 21, 7297. https://doi.org/10.3390/ijms21197297.

    • Search Google Scholar
    • Export Citation
  • Maheshwari, N., Qasim, N., Anjum, R. and Mahmood, R. (2021): Fluoride enhances generation of reactive oxygen and nitrogen species, oxidizes hemoglobin, lowers antioxidant power and inhibits transmembrane electron transport in isolated human red blood cells. Ecotoxicol. Environ. Saf. 208, 111611. https://doi.org/10.1016/j.ecoenv.2020.111611.

    • Search Google Scholar
    • Export Citation
  • Malik, A., Fazili, M., Khatun, A., Rather, M., Khan, H. and Shah, R. (2018): Serum nitric oxide and ascorbic acid levels in pregnant and non-pregnant ewes during non-breeding season. J. Entomol. Zool. Stud. 6(2), 157159. https://doi.org/10.22271/j.ento.

    • Search Google Scholar
    • Export Citation
  • Michael, A., Kyewalyanga, M. S. and Lugomela, C. V. (2019): Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Ann. Microbiol. 69, 13871395. https://doi.org/10.1007/s13213-019-01520-4.

    • Search Google Scholar
    • Export Citation
  • Nabavi, S. F., Nabavi, S. M., Habtemariam, S., Moghaddam, A. H., Sureda, A., Jafari, M. and Latifi, A. M. (2013): Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Ind. Crops. Prod. 44, 5055. https://doi.org/10.1016/j.indcrop.2012.10.024.

    • Search Google Scholar
    • Export Citation
  • Ni, J., Sasaki, Y., Tokuyama, S., Sogabe, A. and Tahara, Y. (2002): Conversion of a typical catalase from Bacillus sp. TE124 to a catalase-peroxidase by directed evolution. J. Biosci. Bioeng. 93, 3136. https://doi.org/10.1016/S1389-1723(02)80050-0.

    • Search Google Scholar
    • Export Citation
  • Ohkawa, H., Ohishi, N. and Yagi, K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351358. https://doi.org/10.1016/0003-2697(79)90738-3.

    • Search Google Scholar
    • Export Citation
  • Ola-Davies, O. E. (2018): Ameliorative effect of gallic acid against sodium fluoride-induced hypertension and hepato-renal complications in Wistar rats. Egypt. J. Aquat. 21, 285294. https://doi.org/10.4314/ajbr.v21i3.

    • Search Google Scholar
    • Export Citation
  • O'Hara, P. J. and Cordes, D. O. (1982): Superphosphate poisoning of sheep: a study of natural outbreaks. New. Zeal. Vet. J. 30, 153155. https://doi.org/10.1080/00480169.1982.34920.

    • Search Google Scholar
    • Export Citation
  • Rahim, A., Aydogmus-Öztürk, F., Cakir, C., Essamadi, A. and El Amiri, B. (2022a): Mitigating fluoride, lead, arsenic and cadmium toxicities in laboratory animals and ruminants through natural products. Rec. Agric. Food. Chem. 2, 117. http://doi.org/10.25135/rfac.6.2202.2365.

    • Search Google Scholar
    • Export Citation
  • Rahim, A., Çakir, C., Ozturk, M., Şahin, B., Soulaimani, A., Sibaoueih, M., Nasser, B., Eddoha, R., Essamadi, A. and El Amiri, B. (2021): Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). S. Afr. J. Bot. 141, 235242. https://doi.org/10.1016/j.sajb.2021.05.006.

    • Search Google Scholar
    • Export Citation
  • Rahim, A. and El Amiri, B. (2023): Effects of heat stress and chemical pollutants on sheep reproduction and strategies to mitigate them, in: Mabrouki, J., Mourade, A., Irshad, A. and Chaudhry, S.A. (Eds.), Advanced Technology for Smart Environment and Energy, Environmental Science and Engineering. Springer International Publishing, Cham, pp. 173185. https://doi.org/10.1007/978-3-031-25662-2_15.

    • Search Google Scholar
    • Export Citation
  • Rahim, A., Essamadi, A. and El Amiri, B. (2023a): Endemic fluorosis in ruminants and its socioeconomic impact in Morocco. Afr. Medit. Agric. J. 138, 7795. https://doi.org/10.34874/IMIST.PRSM/afrimed-i138.39131.

    • Search Google Scholar
    • Export Citation
  • Rahim, A., Essamadi, A. and El Amiri, B. (2022b): A comprehensive review on endemic and experimental fluorosis in sheep: its diverse effects and prevention. Toxicology 465, 153025. https://doi.org/10.1016/j.tox.2021.153025.

    • Search Google Scholar
    • Export Citation
  • Rahim, A., Sibaoueih, M., Essamadi, A. and El Amiri, B. (2023b): An interventional clinical trial investigating the effects of Spirulina platensis on dental fluorosis and antioxidant system in lambs reared in endemic areas. Sci. Rep. 13, 16858. https://doi.org/10.1038/s41598-023-44058-x.

    • Search Google Scholar
    • Export Citation
  • Rios, T. S., Esqueda, M. T. S.-T., Cruz, A. D., Mora, J. L. C., Perrusquía, R. G., Morales, J. L. R., Velasco, J. L. F. and Bautista, J. H. (2017): Oxidative state of ewes with different number of parity during gestation and lactation. Pesq. Vet. Bras. 37, 14051410. https://doi.org/10.1590/S0100-736X2017001200008.

    • Search Google Scholar
    • Export Citation
  • Said, A. N., Slagsvold, P., Bergh, H. and Laksesvela, B. (1977): High fluorine water to whether sheep maintained in pens. Aluminum chloride as a possible alleviator of fluorosis. Nord Vet. Med. 29, 172180.

    • Search Google Scholar
    • Export Citation
  • Samal, P., Patra, R. C., Gupta, A. R., Mishra, S. K., Jena, D. and Satapathy, D. (2016): Effect of Tamarindus indica leaf powder on plasma concentrations of copper, zinc, and iron in fluorotic cows. Vet. World 9, 1121.

    • Search Google Scholar
    • Export Citation
  • Shanks, D. (1997): Clinical implications of volcanic eruptions on livestock - case studies following the 1995 and 1996 eruptions of Mt. Ruapehu. Proceedings of the 27th Seminar of the Society of Sheep and Beef Cattle Veterinarians. N. Zeal. Vet. J. 175, 113.

    • Search Google Scholar
    • Export Citation
  • Sherlin, D. G. and Verma, R. J. (2001): Vitamin D ameliorates fluoride-induced embryotoxicity in pregnant rats. Neurotoxicol. Teratol. 23, 197201. https://doi.org/10.1016/S0892-0362(00)00123-9.

    • Search Google Scholar
    • Export Citation
  • Sibiya, T., Ghazi, T., Mohan, J., Nagiah, S. and Chuturgoon, A. A. (2022): Spirulina platensis ameliorates oxidative stress associated with antiretroviral drugs in hepg2 cells. Plants 11, 3143. https://doi.org/10.3390/plants11223143.

    • Search Google Scholar
    • Export Citation
  • Soni, B., Trivedi, U. and Madamwar, D. (2008): A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour. Technol. 1, 188194. https://doi.org/10.1016/j.biortech.2006.11.010.

    • Search Google Scholar
    • Export Citation
  • Stahl, W. and Sies, H. (1996): Lycopene: a biologically important carotenoid for humans? Arch. Biochem. Biophys. 336, 19. https://doi.org/10.1006/abbi.1996.0525.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., Zhang, Y., Xue, X., Niu, R. and Wang, J. (2018): Maternal fluoride exposure during gestation and lactation decreased learning and memory ability, and glutamate receptor mRNA expressions of mouse pups. Hum. Exp. Toxicol. 37, 8793. https://doi.org/10.1177/0960327117693067.

    • Search Google Scholar
    • Export Citation
  • Susheela, A. K., Mondal, N. K., Gupta, R., Sethi, M. and Pandey, R. M. (2018): Fluorosis is linked to anaemia. Curr. Sci. 115, 692700.

    • Search Google Scholar
    • Export Citation
  • Trinh, D. V. and Nguyen, P. T. H. (2020): Minimising the cost of Spirulina platensis culture medium using Vinh Hao natural mineral water. Chem. Eng. Trans. 78, 1924. https://doi.org/10.3303/CET2078004.

    • Search Google Scholar
    • Export Citation
  • Ulemale, A. H., Kulkarni, M. D., Yadav, G. B., Samant, S. R., Komatwar, S. J. and Khanvilkar, A. V. (2010): Fluorosis in cattle. Vet. World. 3, 526527.

    • Search Google Scholar
    • Export Citation
  • Verma, R. J. and Sherlin, D. M. G. (2001): Vitamin C ameliorates fluoride-induced embryotoxicity in pregnant rats. Hum. Exp. Toxicol. 20, 619623. https://doi.org/10.1191/096032701718890559.

    • Search Google Scholar
    • Export Citation
  • Verma, R. J. and Sherlin, D. G. (2002a): Sodium fluoride-induced hypoproteinemia and hypoglycemia in parental and F1-generation rats and amelioration by vitamins. Food. Chem. Toxicol. 40, 17811788. https://doi.org/10.1016/S0278-6915(02)00170-9.

    • Search Google Scholar
    • Export Citation
  • Verma, R. J. and Sherlin, D. G. (2002b): Hypocalcaemia in parental and F1 generation rats treated with sodium fluoride. Food. Chem. Toxicol. 40, 551554. https://doi.org/10.1016/S0278-6915(01)00100-4.

    • Search Google Scholar
    • Export Citation
  • Vonnahme, K. A., Wilson, M. E., Li, Y., Rupnow, H. L., Phernetton, T. M., Ford, S. P. and Magness, R. R. (2005): Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy. Physiol. J. 565, 101109. https://doi.org/10.1113/jphysiol.2004.082321.

    • Search Google Scholar
    • Export Citation
  • Walallawita, U. S., Wolber, F. M., Ziv-Gal, A., Kruger, M. C. and Heyes, J. A. (2020): Potential role of lycopene in the prevention of postmenopausal bone loss: evidence from molecular to clinical studies. Int. J. Mol. Sci. 21(19), 7119. https://doi.org/10.3390/ijms21197119.

    • Search Google Scholar
    • Export Citation
  • Wheeler, S. M., Brock, T. B. and Teasdale, D. (1985): Effects of added 30 mg fluoride/1 drinking water given to pregnant ewes and their lambs upon physiology and wool growth. J. Agric. Sci. 105, 715726. https://doi.org/10.1017/S0021859600059633.

    • Search Google Scholar
    • Export Citation
  • Wu, S., Wang, Y., Iqbal, M., Mehmood, K., Li, Y., Tang, Z. and Zhang, H. (2022): Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity–a review. Environ. Pollut. 304, 119241. https://doi.org/10.1016/j.envpol.2022.119241.

    • Search Google Scholar
    • Export Citation
  • Yildiz, M. and Oral, B. (2006): The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats. Toxicol. Ind. Health. 22, 217222. https://doi.org/10.1191/0748233706th258oa.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ferenc BASKA

Editorial assistant: Szilvia PÁLINKÁS

 

Editorial Board

  • Mária BENKŐ (Acta Veterinaria Hungarica, Budapest, Hungary)
  • Gábor BODÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Béla DÉNES (University of Veterinary Medicine, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (University of Veterinary Medicine, Budapest, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • János GÁL (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Dušan PALIĆ (Ludwig Maximilian University, Munich, Germany)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA

University of Veterinary Medicine,

H-1078 Budapest, István utca 2., Hungary

Phone: (36 20) 560 4183 (ed.-in-chief) or (36 1) 478 4100/8430 (editor)

E-mail: acta.veterinaria@univet.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2023  
Web of Science  
Journal Impact Factor 0.7
Rank by Impact Factor Q3 (Veterinary Sciences)
Journal Citation Indicator 0.4
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Veterinary)
SNIP 0.39
Scimago  
SJR index 0.258
SJR Q rank Q3

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 832 EUR / 916 USD
Print + online subscription: 960 EUR / 1054 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 110 2 3
Sep 2024 326 5 9
Oct 2024 353 1 1
Nov 2024 220 2 5
Dec 2024 168 0 0
Jan 2025 161 2 3
Feb 2025 65 0 0