View More View Less
  • 1 Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Valencia, Spain
  • 2 Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Messina, Italy
  • 3 Department of Veterinary Sciences, Physiopathology and Clinic of Reproduction Unit, Messina University, Messina, Italy
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Abstract

The aim of the study was to assess the physiological reference values for systemic and intrafollicular placental growth factor (PlGF) concentrations in different categories of follicular sizes in cycling mares, according to progesterone (P4) and oestradiol (E2) patterns. Sixty ovaries were taken after slaughter from 30 clinically healthy mares. Regarding their size, the follicles were classified into three different categories, i.e. small (20–30 mm), medium-sized (31–40 mm) and large (≥41 mm), and follicular fluid (FF) was sampled from each single follicle. Intrafollicular PlGF concentrations were significantly increased in larger and medium-sized follicles compared to small follicles, and their values were 1.48 and 1.36 times higher than the systemic values, respectively. On the other hand, systemic PlGF concentrations were 1.3 times higher than those in the FF of follicles of small size. Intrafollicular P4 concentrations were significantly higher in larger follicles than in small ones, and their concentrations were 6.74 and 3.42 times higher than the systemic values, respectively. Intrafollicular E2 concentrations were significantly higher in large and medium-sized follicles than in follicles of small size, and their concentrations were 21.1, 15.4 and 8.35 times higher than the systemic values, respectively. Intrafollicular and systemic PlGF concentrations were strongly and positively correlated; nevertheless, no correlations between intrafollicular and systemic steroid hormones, PlGF and follicle diameters, PlGF and E2, or PlGF and P4 were observed. This represents the first study to characterise systemic and intrafollicular PlGF concentrations in cycling normal mares, providing evidence that the bioavailability of this factor in follicles of medium and large sizes was higher than in small follicles, independently of steroid hormone concentrations. Further studies are needed to assess the presumable implications of PlGF in follicular angiogenesis in mares, similar to those already observed in women and primates.

  • Acosta, T. J. and Miyamoto, A. (2004): Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Anim. Reprod. Sci. 82, 127140.

    • Search Google Scholar
    • Export Citation
  • Al-Zi’abi, M. O., Watson, E. D. and Fraser, H. M. (2003): Angiogenesis and vascular endothelial growth factor expression in the equine corpus luteum. Reproduction 125, 259270.

    • Search Google Scholar
    • Export Citation
  • Araújo, V. R., Duarte, A. B. G. and Bruno, J. B. (2013): Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals. Zygote 21, 295304.

    • Search Google Scholar
    • Export Citation
  • Artini, P. G., Monti, M., Matteucci, C., Valentino, V., Cristello, F. and Genazzani, A. R. (2006): Vascular endothelial growth factor and basic fibroblast growth factor in polycystic ovary syndrome during controlled ovarian hyperstimulation. Gynecol. Endocrinol. 22, 465470.

    • Search Google Scholar
    • Export Citation
  • Artini, P. G., Ruggiero, M., Parisen Toldin, M. R., Monteleone, P., Monti, M., Cela, V. and Genazzani, A. R. (2009): Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Hum. Fertil. (Camb). 12, 12401244.

    • Search Google Scholar
    • Export Citation
  • Bashir, S. T., Ishak, G. M., Gastal, M. O., Roser, J. F. and Gastal, E. L. (2016): Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology 85, 14911498.

    • Search Google Scholar
    • Export Citation
  • Bender, H. R., Trau, H. A. and Duffy, D. M. (2018): Placental Growth Factor is required for ovulation, luteinization, and angiogenesis in primate ovulatory follicles. Endocrinology 159, 710722.

    • Search Google Scholar
    • Export Citation
  • Bridges, T. S., Davidson, T. R., Chamberlain, C. S., Geisert, R. D. and Spicer, L. J. (2002): Changes in follicular fluid steroids, insulin-like growth factors (IGF) and IGF-binding protein concentration, and proteolytic activity during equine follicular development. J. Anim. Sci. 80, 179190.

    • Search Google Scholar
    • Export Citation
  • Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., Wu, Y., Bono, F., Devy, L., Beck, H., Scholz, D., Acker, T., DiPalma, T., Dewerchin, M., Noel, A., Stalmans, I., Barra, A., Blacher, S., VandenDriessche, T., Ponten, A., Eriksson, U., Plate, K. H., Foidart, J. M., Schaper, W., Charnock-Jones, D. S., Hicklin, D. J., Herbert, J. M., Collen, D. and Persico, M. G. (2001): Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575583.

    • Search Google Scholar
    • Export Citation
  • De Falco, S. (2012). The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 44, 19.

  • Ferreira-Dias, G., Bravo, P. P., Mateus, L., Redmer, D. A. and Medeiros, J. A. (2006): Microvascularization and angiogenic activity of equine corpora lutea throughout the estrous cycle. Domest. Anim. Endocrinol. 30, 247259.

    • Search Google Scholar
    • Export Citation
  • Foss, R., Ortis, H. and Hinrichs, K. (2013): Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet. J. 45, 3943.

    • Search Google Scholar
    • Export Citation
  • Fraser, H. M. (2006): Regulation of the ovarian follicular vasculature. Reprod. Biol. Endocrinol. 4, 18.

  • Gastal, E. L., Gastal, M. O., Wiltbank, M. C. and Ginther, O. J. (1999): Follicle deviation and intrafollicular and systemic estradiol concentrations in mares. Biol. Reprod. 61, 3139.

    • Search Google Scholar
    • Export Citation
  • Ginther, O. J., Gastal, E. L., Gastal, M. O., Bergfelt, D. R., Baerwald, A. R. and Pierson, R. A. (2004a): Comparative study of the dynamics of follicular waves in mares and women. Biol. Reprod. 71, 11951201.

    • Search Google Scholar
    • Export Citation
  • Ginther, O. J., Gastal, E. L., Gastal, M. O. and Beg, M.A. (2004b): Critical role of insulin-like growth factor system in follicle selection and dominance in mares. Biol. Reprod. 70, 13741379.

    • Search Google Scholar
    • Export Citation
  • Ginther, O. J., Gastal, E. L., Gastal, M. O., Siddiqui, M. A. and Beg, M. A. (2007): Relationships of follicle versus oocyte maturity to ultrasound morphology, blood flow, and hormone concentrations of the preovulatory follicle in mares. Biol. Reprod. 77, 202208.

    • Search Google Scholar
    • Export Citation
  • Gourvas, V., Dalpa, E., Konstantinidou, A., Vrachnis, N., Spandidos, D. A. and Sifakis, S. (2012): Angiogenic factors in placentas from pregnancies complicated by fetal growth restriction. Mol. Med. Repr. 6, 2327.

    • Search Google Scholar
    • Export Citation
  • Grazul-Bilska, A. T., Navanukraw, C., Johnson, M. L., Vonnahme, K. A., Ford, S. P., Reynolds, L. P. and Redmer, D. A. (2007): Vascularity and expression of angiogenic factors in bovine dominant follicles of the first follicular wave. J. Anim. Sci. 85, 19141922.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., Barak, V., Maslovitz, S., Amit, A., Lessing, J. B. and Geva, E. (2008): Regulation of vascular endothelial growth factor-A and its soluble receptor sFlt-1 by luteinizing hormone in vivo: implication for ovarian follicle angiogenesis. Fertil. Steril. 89, 922926.

    • Search Google Scholar
    • Export Citation
  • Hayashi, K. G., Ushizawa, K., Hosoe, M. and Takahashi, T. (2010): Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod. Biol. Endocrinol. 8, 11.

    • Search Google Scholar
    • Export Citation
  • Herr, D., Bekes, I. and Wulff, C. (2015): Regulation of endothelial permeability in the primate corpora lutea: implications for ovarian hyperstimulation syndrome. Reproduction 149, R71R79.

    • Search Google Scholar
    • Export Citation
  • Hinrichs, K. (2012): Assisted reproduction techniques in the horse. Reprod. Fertil. Dev. 25, 8093.

  • Hou, L., Taylor, R., Shu, Y., Johnston-MacAnanny, E. and Yalcinkaya, T. (2014): Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) directly correlate with ovarian follicle size in women undergoing in vitro fertilization (IVF). Fertil. Steril. 102 Suppl., e256.

    • Search Google Scholar
    • Export Citation
  • Hunter, M. G., Robinson, R. S., Mann, G. E. and Webb, R. (2004): Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim. Reprod. Sci. 82–83, 461477.

    • Search Google Scholar
    • Export Citation
  • Jakobsson, L., Franco, C. A., Bentley, K., Collins, R. T., Ponsioen, B., Aspalter, I. M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S. and Gerhardt, H. (2010): Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943953.

    • Search Google Scholar
    • Export Citation
  • McFee, R. M., Rozell, T. G. and Cupp, A. S. (2012): The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development. Cell Tissue Res. 349, 635647.

    • Search Google Scholar
    • Export Citation
  • Müller, K., Ellenberger, C. and Schoon, H. A. (2009): Histomorphological and immunohistochemical study of angiogenesis and angiogenic factors in the ovary of the mare. Res. Vet. Sci. 87, 421431.

    • Search Google Scholar
    • Export Citation
  • Nejabati, H. R., Latifi, Z., Ghasemnejad, T., Fattahi, A. and Nouri, M. (2017): Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecol. Endocrinol. 33, 668674.

    • Search Google Scholar
    • Export Citation
  • Satué, K., Fazio, E., Ferlazzo, A. and Medica, P. (2019): Intrafollicular and systemic serotonin, oestradiol and progesterone concentrations in cycling mares. Reprod. Domest. Anim. 54, 14111418.

    • Search Google Scholar
    • Export Citation
  • Satué, K., Marcilla, M., Medica, P., Ferlazzo, A. and Fazio, E. (2018): Sequential concentrations of placental growth factor and haptoglobin, and their relation to oestrone sulphate and progesterone in pregnant Spanish Purebred mare. Theriogenology 115, 7783.

    • Search Google Scholar
    • Export Citation
  • Soares, S. R., Gomez, R., Simon, C., Garcia-Velasco, J. A. and Pellicer, A. (2008): Targeting the vascular endothelial growth factor system to prevent ovarian hyperstimulation syndrome. Hum. Reprod. Update 14, 321333.

    • Search Google Scholar
    • Export Citation
  • Suzumori, N., Sugiura-Ogasawara, M., Katano, K. and Suzumori, K. (2003): Women with endometriosis have increased levels of placental growth factor in the peritoneal fluid compared with women with cystadenomas. Hum. Reprod. 18, 25952598.

    • Search Google Scholar
    • Export Citation
  • Tal, R., Seifer, D. B., Grazi, R. V. and Malter, H. E. (2014): Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation. Reprod. Biol. Endocrinol. 12, 82.

    • Search Google Scholar
    • Export Citation
  • Trau, H. A., Brännström, M., Curry, T. E. J. Jr. and Duffy, D. M. (2016): Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum. Reprod. 31, 436444.

    • Search Google Scholar
    • Export Citation
  • Tsukada, T., Kojima, A. Y., Sato, K., Moriyoshi, M., Koyago, M. and Sawamukai, Y. (2008): Intrafollicular concentrations of steroid hormones and PGF2α in relation to follicular development in the mares during the breeding season. J. Equine Sci. 19, 3134.

    • Search Google Scholar
    • Export Citation
  • Vrachnis, N., Kalampokas, E., Sifakis, S., Vitoratos, N., Kalampokas, T., Botsis, D. and Iliodromiti, Z. (2013): Placental growth factor (PlGF): a key to optimizing fetal growth. J. Matern. Fetal Neonatal Med. 26, 9951002.

    • Search Google Scholar
    • Export Citation
  • Watson, E. D. and Al-Zi'abi, M. O. (2002): Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. Reproduction 124, 227234.

    • Search Google Scholar
    • Export Citation
  • Watson, E. D., Bae, S. E. and Armstrong, D. G. (2003): Molecular and functional characteristics of dominant follicles during spring transition in mares. Pferdeheilkunde 19, 613618.

    • Search Google Scholar
    • Export Citation
  • Watson, E. D. and Hinrichs, K. (1988): Changes in the concentrations of steroids and prostaglandin F in preovulatory follicles of the mare after administration of hCG. J. Reprod. Fertil. 84, 557561.

    • Search Google Scholar
    • Export Citation