View More View Less
  • 1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
  • | 2 Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, 61357-831351 Ahvaz, Islamic Republic of Iran
  • | 3 Poultry Diseases Research Center, School of Veterinary Medicine, Shiraz University, Shiraz, Islamic Republic of Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Abstract

Sudden death syndrome (SDS) is an economically important disorder in broiler chickens with unknown aetiology. The aim of the present study was to evaluate the metabolic and molecular alterations related to hypoxia in the myocardium of broiler chickens with SDS. Samples from the cardiac muscle of internal control broiler chickens (ICs) (n = 36) and chickens having died of SDS (n = 36) were obtained during the rearing period. The activities of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) and the concentration of lactate were measured in the cardiac tissue using available commercial kits. The expression of hypoxia-inducing factor 1α (HIF1α), glucose transporter 1 (GLUT1), pyruvate dehydrogenase kinase 4 (PDHK4) and monocarboxylate transporter 4 (MCT4) genes was determined in the myocardium by real-time PCR analysis. The results showed the elevation of lactate level and activities of LDH and CPK in the cardiac muscle of SDS-affected chickens compared with the IC birds (P < 0.05). The cardiac muscle expression of HIF1α, MCT4 and GLUT1 genes was increased, while the PDHK4 mRNA level was decreased in the SDS-affected group compared to those in the IC chickens (P < 0.05). Our results showed that metabolic remodelling associated with hypoxia in the cardiac tissues may have an important role in the pathogenesis of cardiac insufficiency and SDS in broiler chickens.

  • Adamo, L., Nassif, M. E., Novak, E., LaRue, S. J. and Mann, D. L. (2017): Prevalence of lactic acidaemia in patients with advanced heart failure and depressed cardiac output. Eur. J. Heart Fail. 19 ,10271033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basaki, M., Asasi, K., Tabandeh, M. R. and Aminlari, M. (2016): Polymorphism identification and cardiac gene expression analysis of the calsequestrin 2 gene in broiler chickens with sudden death syndrome. Br. Poultry Sci. 57 ,151160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradford, M. M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7 ,248254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budev, M. M., Arroliga, A. C., Wiedemann, H. P. and Matthay, R. A. (2003): Cor pulmonale: an overview. Semin. Respir. Crit. Care Med. 24 ,233244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J. and Wittwer, C. T. (2009): The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 ,611622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X.-Q., Dong, J., Niu, C.-Y., Fan, J.-M. and Du, J.-Z. (2007): Effects of hypoxia on glucose, insulin, glucagon, and modulation by corticotropin-releasing factor receptor type 1 in the rat. Endocrinology 148 ,32713278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contreras-Baeza, Y., Sandoval, P. Y., Alarcón, R., Galaz, A., Cortés-Molina, F., Alegría, K., Baeza-Lehnert, F., Arce-Molina, R., Guequén, A., Flores, C. A. and San Martín, A. (2019): Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J. Biol. Chem. 294 ,2013520147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowburn, A. S., Macias, D., Summers, C., Chilvers, E. R. and Johnson, R. S. (2017): Cardiovascular adaptation to hypoxia and the role of peripheral resistance. eLife 2017 ,123.

    • Search Google Scholar
    • Export Citation
  • Corbett, J., Fallowfield, J. L., Sale, C. and Harris, R. C. (2004): Relationship between plasma lactate concentration and fat oxidation. Proceedings of the 9th Annual Congress of the European College of Sport Science 107 ,172.

    • Search Google Scholar
    • Export Citation
  • Crespo, R. and Shivaprasad, H. L. (2013): Developmental, metabolic and other noninfectious disorders. In: Swayne, D. E., Glisson, J. R., McDougald, L. R., Nolan, L. K., Suarez, D. L. and Nair, V. L. (eds) Diseases of Poultry. 13th edition. Wiley–Blackwell. pp. 12501251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essop, M. F. (2007): Cardiac metabolic adaptations in response to chronic hypoxia. J. Physiol. 584 ,715726.

  • Gjesdal, G., Braun, O. Ö., Smith, J. G., Scherstén, F. and Tydén, P. (2018): Blood lactate is a predictor of short-term mortality in patients with myocardial infarction complicated by heart failure but without cardiogenic shock. BMC Cardiovasc. Disord. 18 ,18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y. L., Li, M. M., Wu, L. Y., Zhao, T., Di, Y., Huang, X., Ding, X. F., Wu, K. W., Fan, M. and Zhu, L. L. (2014): Enhanced hypoxia-inducible factor (HIF)-1α stability induced by 5-hydroxymethyl-2-furfural (5-HMF) contributes to protection against hypoxia. Mol. Med. 20 ,590600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heather, L. C., Cole, M. A., Tan, J. J., Ambrose, L. J., Pope, S., Abd-Jamil, A. H., Carter, E. E., Dodd, M. S., Yeoh, K. K., Schofield, C. J. and Clarke, K. (2012): Metabolic adaptation to chronic hypoxia in cardiac mitochondria. Basic Res. Cardiol. 107 ,268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurford, W. E., Crosby, G., Strauss, H. W., Jones, R. and Lowenstein, E. (1990): Ventricular performance and glucose uptake in rats during chronic hypobaric hypoxia. J. Nucl. Med. 31 ,13441351.

    • Search Google Scholar
    • Export Citation
  • Imaeda, N. (1999): Characterization of serum enzyme activities and electrolyte levels in broiler chickens after death from sudden death syndrome. Poultry Sci. 78 ,6669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. (2006): HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabol. 1 ,177185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhotra, R., Tyson, D. G., Sone, H., Aoki, K., Kumagai, A. K. and Brosius, F. C. (2002): Glucose uptake and adenoviral mediated GLUT1 infection decrease hypoxia-induced HIF-1α levels in cardiac myocytes. J. Mol. Cell. Cardiol. 1 ,10631073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neary, M. T. and Breckenridge, R. A. (2013): Hypoxia at the heart of sudden infant death syndrome? Pediatr. Res. 74 ,375379.

  • Ngumbela, K. C., Sack, M. N. and Essop, M. F. (2003): Counter regulatory effects of incremental hypoxia on the transcription of a cardiac fatty acid oxidation enzyme-encoding gene. Mol. Cell. Biochem. 250 ,151158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olkowski, A. (2007): Pathophysiology of heart failure in broiler chickens: structural, biochemical, and molecular characteristics. Poultry Sci. 86 ,9991005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olkowski, A. A., Duke, T. and Wojnarowicz, C. (2005): The aetiology of hypoxaemia in chickens selected for rapid growth. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 141 ,122131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olkowski, A., Wojnarowicz, C., Nain, S., Ling, B., Alcorn, J. and Laarveld, B. (2008): A study on pathogenesis of sudden death syndrome in broiler chickens. Res. Vet. Sci. 85 ,131140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ong, S. G., Lee, W. H., Theodorou, L., Kodo, K., Lim, S. Y., Shukla, D. H., Briston, T., Kiriakidis, S., Ashcroft, M., Davidson, S. M. and Maxwell, P. H. (2014): HIF-1 reduces ischaemia–reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc. Res. 104 ,2436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostadal, B., Ostadalova, I. and Dhalla, N. S. (1999): Development of cardiac sensitivity to O2 deficiency: comparative and ontogenetic aspects. Physiol. Rev. 79 ,635659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qujeq, D. and Aliakbarpour, H. R. (2005): Serum activities of enzymes in broiler chickens that died from sudden death syndrome. Pakistan J. Biol. Sci. 8 ,10781080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubart, M. and Zipes, D. P. (2005): Mechanisms of sudden cardiac death. J. Clin. Invest. 115 ,23052315.

  • Scott, T. (2002): Evaluation of lighting programs, diet density, and short term use of mash as compared to crumbled starter to reduce incidence of sudden death syndrome in broiler chicks to 35 d of age. Can. J. Anim. Sci. 82 ,375383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddiqui, M., Patil, M. S., Khan, K. M. and Khan, L. A. (2009): Sudden death syndrome – an overview. Vet. World 2 ,444447.

  • Tabandeh, M. R., Golestani, N., Kafi, M., Hosseini, A., Saeb, M. and Sarkoohi, P. (2012): Gene expression pattern of adiponectin and adiponectin receptors in dominant and atretic follicles and oocytes screened based on brilliant cresyl blue staining. Anim. Reprod. Sci. 131 ,3040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tran, D. H. and Wang, Z. V. (2019): Glucose metabolism in cardiac hypertrophy and heart failure. J. Am. Heart. Assoc. 18 ,118.

  • Trinidad, A. G., Whalley, N., Rowlinson, R., Delpuech, O., Dudley, P., Rooney, C. and Critchlow, S. E. (2017): Pyruvate dehydrogenase kinase 4 exhibits a novel role in the activation of mutant KRAS, regulating cell growth in lung and colorectal tumour cells. Oncogene 36 ,61646176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zervou, S., Whittington, H. J., Russell, A. J. and Lygate, C. A. (2016): Augmentation of creatine in the heart. Mini Rev. Med. Chem. 16 ,1928.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 36 1 2
Jul 2021 0 0 0