View More View Less
  • 1 Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt
  • | 2 Veterinary Services Section, Aswan, Egypt
  • | 3 Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
  • | 4 Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $836.00

Abstract

Brain samples were collected from 33 animals of different species, including buffalo, cattle, dog, donkey, fox and wolf, that had been suspected to be infected by rabies virus (RABV) in different geographical regions of Aswan and Luxor governorates in Egypt. The samples were submitted for histopathological examination and the presence of the nucleic acid and antigens of RABV was tested by RT-PCR and indirect fluorescent antibody technique (IFAT), respectively. Sixteen samples were found positive by all the three examinations. Three samples were selected for further study from animals in which the highest virus loads were detected. The partial sequence of the RABV N gene was determined and analysed from the samples of a buffalo, a cow and a donkey. The viruses in the samples were found to share 95–98% and 95–97% nucleotide and amino acid sequence identities, respectively. In comparison to reference sequences, a few amino acid substitutions occurred in the N protein antigenic sites I and IV in the immunodominant epitopes of the viruses detected in the cow and the donkey but not in the one from the buffalo. The phylogenetic analysis revealed that the RABVs sequenced from the samples belonged to genotype 1, Africa-4 clade, and formed two distinct sub-clades within the Egyptian clade. These findings indicate the circulation of RABV among livestock animals in the southern part of Egypt and raise public health concerns. The amino acid changes detected in this work may contribute to the antigenic diversification of RABVs.

  • Badrane, H., Bahloul, C., Perrin, P. and Tordo, N. (2001): Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J. Virol. 75 ,32683276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbosa, T. F. S., Medeiros, D. B., Travassos da Rosa, E. S., Casseb, L. M. N., Medeiros, R., Pereira Ade, S. and Nunes, M. R. T. (2008): Molecular epidemiology of rabies virus isolated from different sources during a bat-transmitted human outbreak occurring in Augusto Correa municipality, Brazilian Amazon. Virology 370, 228236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitek, A. O., Osoro, E., Munyua, P. M., Nanyingi, M., Muthiani, Y., Kiambi, S. and Thumbi, S. (2019): A hundred years of rabies in Kenya and the strategy for eliminating dog-mediated rabies by 2030. AAS Open Res. 1 ,23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordignon, J., Brasil-dos-Anjos, G., Bueno, C. R., Salvatiera-Oporto, J., Dávila, A. M. R., Grisard, E. C. and Zanetti, C. R. (2005): Detection and characterization of rabies virus in Southern Brazil by PCR amplification and sequencing of the nucleoprotein gene. Arch. Virol. 150, 695708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colombi, D., Serra-Cobo, J., Métras, R., Apolloni, A., Poletto, C., López-Roig, M. and Colizza, V. (2019): Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci. Rep. 9 ,1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, D., Hughes, G. J., Yakobson, B. A., Davidson, I., Un, H., Aylan, O. and Rupprecht, C. E. (2007): Identification of novel canine rabies virus clades in the Middle East and North Africa. J. Gen. Virol. 88, 967980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Souza, D. N., Carnieli, P., Macedo, C. I., de Novaes Oliveira, R., de Carvalho Ruthner Batista, H. B., Rodrigues, A. C. and Kawai, J. G. C. (2017): Phylogenetic analysis of rabies virus isolated from canids in North and Northeast Brazil. Arch. Virol. 162 ,7177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietzgen, R. G., Kondo, H., Goodin, M. M., Kurath, G. and Vasilakis, N. (2017): The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 2 ,158170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fooks, A. R., Johnson, N., Freuling, C. M., Wakeley, P. R., Banyard, A. C., McElhinney, L. M. and Müller, T. (2009): Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century. PLoS Neglected Trop. Dis. 3 (9),e530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goto, H., Minamoto, N., Ito, H., Ito, N., Sugiyama, M., Kinjo, T. and Kawai, A. (2000): Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. J. Gen. Virol. 81 ,119127.

    • Search Google Scholar
    • Export Citation
  • Ito, N., Takayama, M., Yamada, K., Sugiyama, M. and Minamoto, N. (2001): Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J. Virol. 75 ,91219128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N., Lipscomb, D. W., Stott, R., Gopal Rao, G., Mansfield, K., Smith, J. and Fooks, A. R. (2002): Investigation of a human case of rabies in the United Kingdom. J. Clin. Virol. 25 ,351356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khawplod, P., Shoji, Y., Ubol, S., Mitmoonpitak, C., Wilde, H., Nishizono, A. and Morimoto, K. (2006): Genetic analysis of dog rabies viruses circulating in Bangkok. Infect. Genet. Evol. 6 ,235240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuzmin, I. V., Hughes, G. J., Botvinkin, A. D., Orciari, L. A. and Rupprecht, C. E. (2005): Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definition. Virus Res. 111 ,2843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., Zhang, H., Ji, L., Wang, X., Wen, Y., Li, G. and Yang, Y. (2019): Deficient incorporation of rabies virus glycoprotein into virions enhances virus-induced immune evasion and viral pathogenicity. Viruses 11 ,218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manjunatha Reddy, G. B., Krishnappa, S., Vinayagamurthy, B., Singh, R., Singh, K. P., Saminathan, M. and Rahman, H. (2018): Molecular epidemiology of rabies virus circulating in domestic animals in India. Virus Dis. 29 ,362368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagarajan, T., Nagendrakumar, S. B., Mohanasubramanian, B., Rajalakshmi, S., Hanumantha, N. R., Ramya, R. and Srinivasan, V. A. (2009): Phylogenetic analysis of nucleoprotein gene of dog rabies virus isolates from Southern India. Infect. Genet. Evol. 9 ,976982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naji, E., Fadajan, Z., Afshar, D. and Fazeli, M. (2020): Comparison of reverse transcription loop-mediated isothermal amplification method with SYBR green real-time RT-PCR and direct fluorescent antibody test for diagnosis of rabies. JJID 73, 1925.

    • Search Google Scholar
    • Export Citation
  • OIE (2018): Rabies, Egypt. Retrieved from https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=23998&fbclid=IwAR1-ltbfDUTshI_1rDZaiU_aO2wTYFw_iP05JnNUYOzm6MvtxdrKg9B4GHw.

    • Search Google Scholar
    • Export Citation
  • OIE Terrestrial Manual (2018): Chapter 3.1.17. Rabies (infection with rabies virus and other lyssaviruses). https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.17_RABIES.pdf.

    • Search Google Scholar
    • Export Citation
  • Olarinmoye, A. O., Kamara, V., Jomah, N. D., Olugasa, B. O., Ishola, O. O., Kamara, A. and Luka, P. D. (2019): Molecular detection of rabies virus strain with n-gene that clustered with China lineage 2 co-circulating with Africa lineages in Monrovia, Liberia: first reported case in Africa. Epidemiol. Infect. 147 ,e85.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orłowska, A. and Zmudziński, J. F. (2014): Molecular epidemiology of rabies virus in Poland. Arch. Virol. 159 ,20432050.

  • Páez, A., Saad, C., Núñez, C. and Bóshell, J. (2005): Molecular epidemiology of rabies in northern Colombia 1994–2003. Evidence for human and fox rabies associated with dogs. Epidemiol. Infect. 133 ,529536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reddy, G. B. M., Singh, R., Singh, R. P., Singh, K. P., Gupta, P. K., Desai, A. and Verma, R. (2011): Molecular characterization of Indian rabies virus isolates by partial sequencing of nucleoprotein (N) and phosphoprotein (P) genes. Virus Genes. 43 ,1317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reddy, R. V. C., Mohana Subramanian, B., Surendra, K. S. N. L., Babu, R. P. A., Rana, S. K., Manjari, K. S. and Srinivasan, V. A. (2014): Rabies virus isolates of India – simultaneous existence of two distinct evolutionary lineages. Infect. Genet. Evol. 27, 163172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soliman, A. K., Botros, B. A. M., Ksiazek, T. G., Hoogstraal, H., Helmy, I. and Morrill, J. C. (1989): Seroprevalence of Rickettsia typhi and Rickettsia conorii infection among rodents and dogs in Egypt. J. Trop. Med. Hyg. 92 ,345349.

    • Search Google Scholar
    • Export Citation
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013): MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 ,27252729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troupin, C., Dacheux, L., Tanguy, M., Sabeta, C., Blanc, H., Bouchier, C. and Bourhy, H. (2016): Large-scale phylogenomic analysis reveals the complex evolutionary history of rabies virus in multiple carnivore hosts. Plos Pathog. 22 ,e1006041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidy, A., El Bougrini, J., Chelbi-Alix, M. K. and Blondel, D. (2007): The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. J. Virol. 81 ,42554263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, P. J., Blasdell, K. R., Calisher, C. H., Dietzgen, R. G., Kondo, H., Kurath, G. and Whitfield, A. E. (2018): ICTV virus taxonomy profile: Rhabdoviridae. J. Gen. Virol. 99 ,447448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WHO (2018): WHO expert consultation on rabies. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/272364/9789241210218-eng.pdf?ua=1.

    • Search Google Scholar
    • Export Citation
  • Wisser, C. S., Neto, A. T., Batista, H. B. C. R., Mori, E., Chierato, M. E. R., Fernandes, M. E. S. and Traverso, S. D. (2020): Cattle rabies: the effect of clinical evolution, viral genetic lineage, and viral load on the severity of histological lesions. Pesqui. Vet. Bras. 40 ,227233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D. K., Park, Y. N., Hong, G. S., Kang, H. K., Oh, Y. I., Cho, S. D. and Song, J. Y. (2011): Molecular characterization of Korean rabies virus isolates. J. Victorian Cult. 12 ,5763.

    • Search Google Scholar
    • Export Citation
  • Zhang, K. S., Guo, J. H., Xu, Z. F., Xiang, M., Wu, B. and Chen, H. C. (2011): Diagnosis and molecular characterization of rabies virus from a buffalo in China: a case report. Virol. J. 8 ,101.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 41 5 6
Jul 2021 0 0 0