View More View Less
  • 1 Departmento de Medicina Veterinária, Universidade Federal Rural de Pernambuco – UFRPE, Recife, Brazil
  • | 2 Departmento de Genética, Universidade Federal de Pernambuco – UFPE, Recife, Brazil
Restricted access

Abstract

Follicle-stimulating hormone (FSH) contributes to the acquisition of oocyte competence by modulating signalling pathways in cumulus cells (CCs), albeit much less is known about transcription factors (TFs) that orchestrate the downstream transcriptional changes. This work allowed to prospect TFs involved in FSH-mediated signalling during oocyte in vitro maturation (IVM). Bovine cumulus-oocyte complexes underwent IVM with FSH (FSH+) or without FSH (control/CTL) for 22 h, and CCs were subjected to gene expression profiling. Five software identified reference genes for RT-qPCR (ATP1A1, UBB, and YWHAZ). The transcript levels of FSH-responsive genes HAS2 and PTGS2 (COX2) validated the experimental design. Among candidate TFs, MYC was down-regulated (0.35-fold; P < 0.0001), and THAP11 (RONIN) was up-regulated (1.47-fold; P = 0.016) under FSH+ conditions. In silico analyses predicted binding motifs at MYC and THAP11 genes for previously known FSH-responsive TFs. Signalling pathways (EGFR, ERK, GSK3, PKA, and P38) may execute post-translational regulation due to potential phosphorylation sites in MYC and THAP11 proteins. Prediction of protein–protein interaction networks showed MYC as a core component of FSH signalling, albeit THAP11 acts independently. Hence, MYC integrates FSH signalling networks and may assist in exploring genome-wide transcriptional changes associated with the acquisition of oocyte competence.

Supplementary Materials

    • Supplemental Materials
  • Andersen, C. L. , Jensen, J. L. and Ørntoft, T. F. (2004): Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64 ,52455250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrade, G. M. , Del Collado, M. , Meirelles, F. V. , Da Silveira, J. C. and Perecin, F. (2019): Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reprod. 16 ,485496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assidi, M. , Dufort, I. , Ali, A. , Hamel, M. , Algriany, O. , Dielemann, S. and Sirard, M. A. (2008): Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbolmyristate acetate in vitro .Biol. Reprod. 79 ,209222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assidi, M. , Richard, F. J. and Sirard, M. A. (2013): FSH in vitro versus LH in vivo: similar genomic effects on the cumulus. J. Ovarian Res. 6 ,68.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baufeld, A. , Koczan, D. and Vanselow, J. (2019): L-lactate induces specific genome wide alterations of gene expression in cultured bovine granulosa cells. BMC Genom. 20 ,273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaha, M. , Nemcova, L. , Kepkova, K. V. , Vodicka, P. and Prochazka, R. (2015): Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides. Reprod. Biol. Endocrinol. 6 ,113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantanhêde, L. F. , Santos-Silva, C. T. , Moura, M. T. , Gonçalves, D. N. , Ferreira-Silva, J. C. , Oliveira, J. M. , Teixeira, A. A. , Wanderley-Teixeira, V. and Oliveira, M. A. L. (2021): FSH mediates the consumption of serum-derived glycogen by bovine cumulus-oocyte complexes during in vitro maturation. Vet. World 14 ,25122517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casarini, L. and Crépieux, P. (2019): Molecular mechanisms of action of FSH. Frontiers Endocrinol. 10 ,305.

  • Chapman, J. R. and Waldenström, J. (2015): With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One 10 ,e0141853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dejosez, M. , Krumenacker, J. S. , Zitur, L. J. , Passeri, M. , Chu, L.-F. , Songyang, Z. , Thomson, J. A. and Zwaka, T. P. (2008): Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 27 ,11621174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dejosez, M. , Levine, S. S. , Frampton, G. M. , Whyte, W. A. , Stratton, S. A. , Barton, M. C. , Gunaratne, P. H. , Young, R. A. and Zwaka, T. P. (2010): Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 24 ,14791484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eilers, M. and Eisenman, R. N. (2008): Myc’s broad reach. Genes Dev. 15 ,27552766.

  • Farré, D. , Roset, R. , Huerta, M. , Adsuara, J. E. , Roselló, L. , Albà, M. M. and Messeguer, X. (2003): Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31 ,36513653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, J. , Freire, P. , Coarfa, C. , Benham, A. L. , Gunaratne, P. , Schneider, M. D. , Dejosez, M. and Zwaka, T. P. (2017): Ronin governs early heart development by controlling core gene expression programs. Cell Rep. 21 ,15621573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloaguen, P. , Crépieux, P. , Heitzler, D. , Poupon, A. and Reiter, E. (2011): Mapping the follicle-stimulating hormone-induced signaling networks. Front. Endocrinol. 2 ,45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goszczynski, D. E. , Halstead, M. M. , Islas-Trejo, A. D. , Zhou, H. and Ross, P. J. (2021): Transcription initiation mapping in 31 bovine tissues reveals complex promoter activity, pervasive transcription, and tissue-specific promoter usage. Genome Res. 31 ,732744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herndon, M. K. , Law, N. C. , Donaubauer, E. M. , Kyriss, B. and Hunzicker-Dunn, M. (2016): Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol. Cell. Endocrinol. 434 ,116126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, D. R. , Guillemette, C. , Sirard, M. A. and Richard, F. J. (2015): Characterization of FSH signalling networks in bovine cumulus cells: a perspective on oocyte competence acquisition. Mol. Hum. Reprod. 21 ,688701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, F. T. , Fan, K. , Bentsi-Barnes, I. , Barlow, G. M. and Pisarska, M. D. (2012): Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell. Reproduction 144 ,485494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livak, K. J. and Schmittgen, T. D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 ,402408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonergan, P. and Fair, T. (2016): Maturation of oocytes in vitro. Ann. Rev. Anim. Biosci. 4 ,255268.

  • Macaulay, A. D. , Gilbert, I. , Scantland, S. , Fournier, E. , Ashkar, F. , Bastien, A. , Saadi, H. A. , Gagne, D. , Sirard, M. A. , Khandjian, E. W. , Richard, F. J. , Hyttel, P. and Robert, C. (2016): Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol. Reprod. 94 ,16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J. , Zhang, Q. , Ye, X. Y. , Liu, K. and Liu, L. (2014): Efficient induction of pluripotent stem cells from granulosa cells by Oct4 and Sox2. Stem Cells Dev. 23 ,779789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marei, W. F. , Abayasekara, D. R. E. , Wathes, D. C. and Fouladi-Nashta, A. A. (2014): Role of PTGS2-generated PGE2 during gonadotrophin-induced bovine oocyte maturation and cumulus cell expansion. Reprod. Biomed. Online 28 ,388400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. R. , McDaneld, T. G. , Wiedmann, R. T. , Cushman, R. A. , Echternkamp, S. E. , Vallet, J. L. and Smith, T. P. L. (2012): MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Anim. Reprod. Sci. 130 ,1626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moura, M. T. , Silva, R. L. O. , Cantanhêde, L. F. , Silva, J. B. , Ferreira-Silva, J. C. , Silva, P. G. , Ramos-Deus, P. , Pandolfi, V. , Kido, E. A. , Benko-Iseppon, A. M. and Oliveira, M. A. (2018): Activity of non-canonical pluripotency-associated transcription factors in goat cumulus-oocyte complexes. Livestock Sci. 212 ,5256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moura, M. T. , Silva, R. L. , Nascimento, P. S. , Ferreira-Silva, J. C. , Cantanhêde, L. F. , Kido, E. A. , Benko-Iseppon, A.M. and Oliveira, M. A. (2019): Inter-genus gene expression analysis in livestock fibroblasts using reference gene validation based upon a multi-species primer set. PLoS One 14 ,e0221170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, S. , Yokota, D. , Tan, L. , Nagata, Y. , Takemura, T. , Hirano, I. , Shigeno, K. , Shibata, K. , Fujisawa, S. and Ohnishi, K. (2012): Down-regulation of Thanatos-associated protein 11 by BCR-ABL promotes CML cell proliferation through c-Myc expression. Int. J. Cancer 130 ,10461059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuttinck, F. , Reinaud, P. , Tricoire, H. , Vigneron, C. , Peynot, N. , Mialot, J. P. , Mermillod P. and Charpigny, G. (2002): Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Mol. Reprod. Dev. 61 ,93101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuttinck, F. , Charpigny, G. , Mermillod, P. , Loosfelt, H. , Meduri, G. , Freret, S. , Grimard, B. and Heyman, Y. (2004): Expression of components of the insulin-like growth factor system and gonadotropin receptors in bovine cumulus-oocyte complexes during oocyte maturation. Domest. Anim. Endocrinol. 27 ,179195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, T. , Wilmut, I. and Taylor, J. (2013): Quantitative evaluation of reference genes for real-time PCR during in vitro maturation of ovine oocytes. Reprod. Domest. Anim. 48 ,477483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, E. N. (2006): Gene regulatory networks in the evolution and development of the heart. Science 313 ,19221927.

  • Pfaffl, M. W. , Horgan, G. W. and Dempfle, L. (2002): Relative expression software tool (REST) for groupwise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30 ,110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfaffl, M. W. , Tichopad, A. , Prgomet, C. and Neuvians, T. P. (2004): Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Letters 26 ,509515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahl, P. B. and Young, R. A. (2014): MYC and transcription elongation. Cold Spring Harb. Perspect. Med. 4 ,a020990.

  • Richani, D. and Gilchrist, R. B. (2018): The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum. Reprod. Update 24 ,114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, J. S. (2005): Ovulation: new factors that prepare the oocyte for fertilization. Mol. Cell. Endocrinol. 29 ,7579.

  • Russell, D. L. , Gilchrist, R. B. , Brown, H. M. and Thompson, J. G. (2016): Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology 86 ,6268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenfelder, M. and Einspanier, R. (2003): Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biol. Reprod. 69 ,269277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sears, R. , Nuckolls, F. , Haura, E. , Taya, Y. , Tamai, K. and Nevins, J. R. (2000): Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14 ,25012514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, L. R. O. , Silva, M. D. , Ferreira Neto, J. R. C. , De Nardi, C. H. , Chabregas, S. M. , Burnquist, W. L. , Kahl, G. , Benko-Iseppon, A. M. and Kido, E. A. (2014): Validation of novel reference genes for reverse transcription quantitative real-time PCR in drought-stressed sugarcane. Sci. World J. 2014 ,357052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, P. G. C. , Moura, M. T. , Silva, R. L. O. , Nascimento, P. S. , Silva, J. B. , Ferreira-Silva, J. C. , Cantanhêde, L. F. , Chaves, M. S. , Benko-Iseppon, A. M. and Oliveira, M. A. L. (2018): Temporal expression of pluripotency-associated transcription factors in sheep and cattle preimplantation embryos. Zygote 26 ,270278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silver, N. , Best, S. , Jiang, J. and Thein, S. L. (2006): Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7 ,19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirard, M. A. , Desrosier, S. and Assidi, M. (2007): In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 68 ,S71S76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szklarczyk, D. , Gable, A. L. , Nastou, K. C. , Lyon, D. , Kirsch, R. , Pyysalo, S. and von Mering, C. (2021): The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 (D1 ),D605D612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S. C. , Nadeau, K. , Abbasi, M. , Lachance, C. , Nguyen, M. and Fenrich, J. (2019): The Ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol. 37 ,761774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandesompele, J. , De Preter, K. , Pattyn, F. , Poppe, B. , Van Roy, N. , De Paepe, A. and Speleman, F. (2002): Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 ,Research 0034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tol, H. T. A. , Van Eijk, M. J. T. , Mummery, C. L. , Van Den Hurk, R. and Bevers, M. M. (1996): Influence of FSH and hCG on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol. Reprod. Dev. 45 ,218224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayagam, A. , Stelzl, U. , Foulle, R. , Plassmann, S. , Zenkner, M. , Timm, J. , Assmus, H. E. , Andrade-Navarro, M. A. and Wanker, E. E. (2011): A directed protein interaction network for investigating intracellular signal transduction. Sci. Signaling 4 ,rs8–rs8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. K. , Li, X. , Song, Z. Q. and Yang, C. X. (2017): Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes. Reprod. Domest. Anim. 52 ,722730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z. , Ge, L. , Wang, M. and Carr, B. I. (2006): Phosphorylation regulates Myc expression via prolonged activation of the mitogen-activated protein kinase pathway. J. Cell. Physiol. 208 ,133140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, S. , Shen, X. , Lai, L. , Liang, H. , Deng, Y. , Gong, Z. and Che, T. (2018): FSH receptor binding inhibitor impacts K-Ras and c-Myc of ovarian cancer and signal pathway. Oncotarget 9 ,2249822508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F. , Xiao, P. , Chen, D. , Xu, L. and Zhang, B. (2012): miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80 ,7584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. , Gong, Z. , Shen, X. ,Bai, S. , Bai, X. and Wei, S. (2019): FSH receptor binding inhibitor depresses carcinogenesis of ovarian cancer via decreasing levels of K-Ras, c-Myc and FSHR. Anim. Biotechnol. 28 ,18.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. , Zhang, H. , Shi, H. , Wang, F. , Du, J. , Wang, Y. , Wei, Y. , Xue, W. , Li, D. , Feng, Y. , Yan, J. , Gao, Y. , Li, J. and Han, J. (2020): THAP11 Functions as a tumor suppressor in gastric cancer through regulating c-Myc signaling pathways. BioMed Res. Int. 2020 ,7838924.

    • Search Google Scholar
    • Export Citation

Author information is available in PDF.
Please, download the file from HERE.

The manuscript preparation instructions is available in PDF.
Please, download the file from HERE.

Senior editors

Editor-in-Chief: Mária BENKŐ

Managing Editor: András SZÉKELY

Editorial Board

  • Béla DÉNES (National Food Chain Safety Office, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (National Agricultural Innovation Centre, Herceghalom, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 467 4081 (ed.-in-chief) or (36 1) 213 9793 (editor) Fax: (36 1) 467 4076 (ed.-in-chief) or (36 1) 213 9793

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2021  
Web of Science  
Total Cites
WoS
1040
Journal Impact Factor 0,959
Rank by Impact Factor Veterinary Sciences 103/144
Impact Factor
without
Journal Self Cites
0,876
5 Year
Impact Factor
1,222
Journal Citation Indicator 0,48
Rank by Journal Citation Indicator Veterinary Sciences 106/168
Scimago  
Scimago
H-index
36
Scimago
Journal Rank
0,313
Scimago Quartile Score Veterinary (miscellaneous) (Q2)
Scopus  
Scopus
Cite Score
1,7
Scopus
CIte Score Rank
General Veterinary 79/183 (Q2)
Scopus
SNIP
0,610

2020  
Total Cites 987
WoS
Journal
Impact Factor
0,955
Rank by Veterinary Sciences 101/146 (Q3)
Impact Factor  
Impact Factor 0,920
without
Journal Self Cites
5 Year 1,164
Impact Factor
Journal  0,57
Citation Indicator  
Rank by Journal  Veterinary Sciences 93/166 (Q3)
Citation Indicator   
Citable 49
Items
Total 49
Articles
Total 0
Reviews
Scimago 33
H-index
Scimago 0,395
Journal Rank
Scimago Veterinary (miscellaneous) Q2
Quartile Score  
Scopus 355/217=1,6
Scite Score  
Scopus General Veterinary 73/183 (Q2)
Scite Score Rank  
Scopus 0,565
SNIP  
Days from  145
submission  
to acceptance  
Days from  150
acceptance  
to publication  
Acceptance 19%
Rate

 

2019  
Total Cites
WoS
798
Impact Factor 0,991
Impact Factor
without
Journal Self Cites
0,897
5 Year
Impact Factor
1,092
Immediacy
Index
0,119
Citable
Items
59
Total
Articles
59
Total
Reviews
0
Cited
Half-Life
9,1
Citing
Half-Life
9,2
Eigenfactor
Score
0,00080
Article Influence
Score
0,253
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,09791
Average
IF
Percentile
42,606
Scimago
H-index
32
Scimago
Journal Rank
0,372
Scopus
Scite Score
335/213=1,6
Scopus
Scite Score Rank
General Veterinary 62/178 (Q2)
Scopus
SNIP
0,634
Acceptance
Rate
18%

 

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 710 EUR / 892 USD
Print + online subscription: 824 EUR / 1028 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2022 0 0 0
Feb 2022 0 0 0
Mar 2022 0 0 0
Apr 2022 0 0 0
May 2022 212 4 4
Jun 2022 66 7 4
Jul 2022 0 0 0