The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10−5 to (7.9 ± 2.6) * 10−4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.
Ahmed, A. M., Motoi, Y., Sato, M., Maruyama, A., Watanabe, H., Fukumoto, Y. and Shimomoto, T. (2007): Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Appl. Environ. Microbiol. 73, 6686–6690.
Aldakov, A. and Kondruchina, S. (2020): Treatment of chronic bronchial pneumonia in calves. Vestnik BSAU. 4, 73–76.
Aleisa, A. M., Ashgan, M. H., Alnasserallah, A. A., Mahmoud, M. H. and Moussa, I. M. (2013): Molecular detection of β-lactamases and aminoglycoside resistance genes among Escherichia coli isolates recovered from medicinal plant. Afr. J. Microbiol. Res. 7, 2305–2310. https://doi.org/10.5897/AJMR12.1965.
Allen, V. G., Farrell, D. J., Rebbapragada, A., Tan, J., Tijet, N., Perusini, S. J., Towns, L., Lo, S., Low, D. E. and Melano, R. G. (2011): Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob. Agents Chemother. 55, 703–712.
Andriukov, B. G., Besednova, N. N. and Zaporozhets, T. S. (2022): Mobile genetic elements of prokaryotes and their role in the formation of antibiotic resistance in pathogenic bacteria. Antibiot. Chemother. 67, 62–74.
Bashahun, G. M. and Amina, A. (2017): Colibacillosis in calves: a review of literature. J. Anim. Sci. Vet. Med. 2, 62–71.
Cao, H., Bougouffa, S., Park, T. J., Lau, A., Tong, M. K., Chow, K. H. and Ho, P. L. (2022): Sharing of antimicrobial resistance genes between humans and food animals. mSystems. 7, e0077522.
Cattoir, V., Poirel, L. and Nordmann, P. (2008): Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob. Agents Chemother. 52, 3801–3804.
Chantziaras, I. Boyen, F., Callens, B. and Dewulf, J. (2014): Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J. Antimicrob. Chemother. 69, 827–834.
Čitar, M. (2010): Virulentni dejavniki izolatov bakterije Escherichia coli iz blata zdravih ljudi // Biotehniška fakulteta. Ljubljana, pp. 97.
Essack, S. Y. (2018): Environment: the neglected component of the One Health triad. Lancet Planet. Health. 2, e238–e239.
Ewers, C., Bethe, A., Semmler, T., Guenther, S. and Wieler, L. H. (2012): Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin. Microbiol. Infect. 18, 646–655.
Firoozeh, F., Zibaei, M. and Soleimani-Asl, Y. (2014): Detection of plasmid-mediated qnr genes among the quinolone-resistant Escherichia coli isolates in Iran. J. Infect. Dev. Ctries. 8, 818–822.
Fischer, E. A. J., Dierikx, C. M., van Essen-Zandbergen, A., Mevius, D., Stegeman, A., Velkers, F. C. and Klinkenberg, D. (2019): Competition between Escherichia coli populations with and without plasmids carrying a gene encoding extended-spectrum beta-lactamase in the broiler chicken gut. Appl. Environ. Microbiol. 85, e00892–19.
Guerra, B., Junker, E., Schroeter, A., Malorny, B., Lehmann, S. and Helmuth, R. (2003): Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 52, 489–492.
Hendriksen, R. S., Bangtrakulnonth, A., Pulsrikarn, C., Pornreongwong, S., Hasman, H., Song, S. W. and Aarestrup, F. M. (2008): Antimicrobial resistance and molecular epidemiology of Salmonella rissen from animals, food products and patients in Thailand and Denmark. Foodborne Pathog. Dis. 5, 605–619.
Jalil, A., Gul, S., Bhatti, M. F., Siddiqui, M. F. and Adhan, F. (2023): High occurrence of multidrug-resistant Escherichia coli strains in bovine fecal samples from healthy cows serves as rich reservoir for AMR transmission. Antibiotics 12(1). https://doi.org/10.3390/antibiotics12010037.
Karimi Dehkordi, M., Halaji, M. and Nouri, S. (2020): Prevalence of class 1 integron in Escherichia coli isolated from animal sources in Iran: a systematic review and meta-analysis. Trop. Med. Health. 48, 16.
Kathayat, D., Lokesh, D., Ranjit, S. and Rajashekara, G. (2021): Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens. 10, 467.
Kenzaka, T. and Tani, N. (2010): High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 4, 648–659.
Koo, H. J. and Woo, G. J. (2012): Characterization of antimicrobial resistance of Escherichia coli recovered from foods of animal and fish origin in Korea. J. Food Prot. 75: 966–972.
Kuznetsova, M. V., Gizatullina, J. S., Nesterova, L. Y. and Starčič Erjavec, M. (2020): Escherichia coli isolated from cases of colibacillosis in Russian poultry farms (Perm Krai): sensitivity to antibiotics and bacteriocins. Microorganisms. 8, 741.
Kuznetsova, M. V., Karpunina, T. I., Pospelova, S. V., Afanasievskaya, E. V., Gorowitz, E. S. and Demakov, V. A. (2010): Specific diversity and antibiotic sensitivity of Gram-negative bacteria isolated from poultry plants. NSU Vestnik. 8, 70–77.
Kuznetsova, M. V., Mihailovskaya, V. S., Remezovskaya, N. B. and Starčič Erjavec, M. (2022): Bacteriocin-producing Escherichia coli isolated from the gastrointestinal tract of farm animals: prevalence, molecular characterization and potential for application. Microorganisms. 10, 1558.
Lévesque, C., Piché, L., Larose, C. and Roy, P. H. (1995): PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39, 185–191.
Lv, C., Shang, J., Zhang, W., Sun, B., Li, M., Guo, C., Zhou, N., Guo, X., Huang, S. and Zhu, Y. (2022): Dynamic antimicrobial resistant patterns of Escherichia coli from healthy poultry and swine over 10 years in Chongming Island, Shanghai. Infect. Dis. Poverty. 11, 98.
Lyimo, B., Buza, J., Subbiah, M., Temba, S., Kipasika, H., Smith, W. and Call, D. R. (2016): IncF plasmids are commonly carried by antibiotic resistant Escherichia coli isolated from drinking water sources in Northern Tanzania. Int. J. Microbiol. 2016, 3103672.
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T. and Monnet, D. L. (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281.
Makarov, D. A., Ivanova, O. E., Karabanov, S. Y., Gergel, M. A. and Pomazkova, A. V. (2020): Antimicrobial resistance of commensal Escherichia coli from food-producing animals in Russia. Vet. World. 13, 2053–2061.
Marti, E., Variatza, E. and Balcázar, J. L. (2014): Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment. Clin. Microbiol. Inf. 20, O456–O459.
Martínez-Vázquez, A. V., Vázquez-Villanueva, J., Leyva-Zapata, L. M., Barrios-García, H., Rivera, G. and Bocanegra-García, V. (2021): Multidrug resistance of Escherichia coli strains isolated from bovine feces and carcasses in Northeast Mexico. Front. Vet. Sci. 8, 643802.
Miranda, C., Igrejas, G. and Poeta, P. (2023): Bovine colostrum: human and animal health benefits or route transmission of antibiotic resistance-One Health perspective. Antibiotics (Basel). 12, 1156.
Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., Hafez, H. M. and El-Adawy, H. (2017): Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog. 9, 57.
Moniri, R. and Dastehgoli, K. (2005): Fluoroquinoloneresistant Escherichia coli isolated from healthy broilers with previous exposure to fluoroquinolones: is there a link? Microb. Ecol. Health Dis. 17, 69–74.
Muloi, D. M., Hassell, J. M., Wee, B. A, Ward, M. J., Bettridge, J. M. and Woolhouse, M. E. (2022): Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya. BMC Med. 20, 471.
Nikulina, N. B. and Aksenova, V. M. (2019): The causes of cow diseases in the farms of Permskiy Kray. Perm Agrarian Bulletin. 4, 113–119.
Saeed, M., Haque, A. and Ali, A. (2009): A profile of drug resistance genes and integrons in E. coli causing surgical wound infections in the Faisalabad region of Pakistan. J. Antibiot. 62, 319–323.
Santos, A. C., Santos, F. F., Silva, R. M. and Gomes, T. A. T. (2020): Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front. Cell. Infect. Microbiol. 10, 339.
Schaufler, K., Semmler, T., Wieler, L. H., Trott, D. J., Pitout, J., Peirano, G., Bonnedahl, J., Dolejska, M., Literak, I., Fuchs, S., Ahmed, N., Grobbel, M., Torres, C., McNally, A., Pickard, D., Ewers, C., Croucher, N. J., Corander, J. and Guenther, S. (2019): Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob. Agents Chemother. 63, 1.
Scott, H. M., Acuff, G., Bergeron, G., Bourassa, M. W., Gill, J., Graham, D. W., Kahn, L. H., Morley, P. S., Salois, M. J., Simjee, S., Singer, R. S., Smith, T. C., Storrs, C. and Wittum, T. E. (2019): Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. N. Y. Acad. Sci. 144, 8–16.
Sørum, H. and Sunde, M. (2001): Resistance to antibiotic in the normal flora of animals. Vet Res. 32, 227–241.
Strahilevitz, J., Jacoby, G. A., Hooper, D. C. and Robicsek, A. (2009): Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664–689.
Sun, C., Cui, M., Zhang, S., Liu, D., Fu, B., Li, Z., Bai, R., Wang, Y., Wang, H., Song, L., Zhang, C., Zhao, Q., Shen, J., Xu, S., Wu, C. and Wang, Y. (2020): Genomic epidemiology of animal-derived tigecycline-resistant Escherichia coli across China reveals recent endemic plasmid-encoded tet(X4) gene. Commun. Biol. 3, 412.
Szmolka, A. and Nagy, B. (2013): Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol. 4, 258.
Thaker, M., Spanogiannopoulos, P. and Wright, G. D. (2010): The tetracycline resistome. Cell Mol. Life Sci. 67, 419–431.
Xu, C., Kong, L., Liao, Y., Tian, Y., Wu, Q., Liu, H. and Wang, X. (2022) Mini-review: antibiotic-resistant Escherichia coli from farm animal-associated sources. Antibiotics. 11, 1535.
Yang, F., Zhang, S., Shang, X., Wang, L., Li, H. and Wang, X. (2017): Characteristics of quinolone-resistant Escherichia coli isolated from bovine mastitis in China. J. Dairy Sci. 101, 6244–6252.
Yu, B., Zhang, Y., Yang L., Xu, J. and Bu, S. (2021): Analysis of antibiotic resistance phenotypes and genes of Escherichia coli from healthy swine in Guizhou, China. Onderstepoort J. Vet. Res. 88, e1–e8.
Zabrovskaya, A. V. and Egorova, S. A. (2018): Antimicrobial resistance mechanisms in bacteria strains isolated from farm animals. Russ. J. Infec. Imm. 8, 612–613.
Zhang, T., Wang, C. G., Lv, J. C., Wang, R. S. and Zhong, X. H. (2012): Survey on tetracycline resistance and antibiotic-resistant genotype of avian Escherichia coli in North China. Poultry Sci. 91, 2774–2777.