Authors:
Veronika S. Mihailovskaya Perm Federal Research Centre, Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081, Russia

Search for other papers by Veronika S. Mihailovskaya in
Current site
Google Scholar
PubMed
Close
,
Marjanca Starčič Erjavec Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia

Search for other papers by Marjanca Starčič Erjavec in
Current site
Google Scholar
PubMed
Close
, and
Marina V. Kuznetsova Perm Federal Research Centre, Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081, Russia

Search for other papers by Marina V. Kuznetsova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2448-4823
Restricted access

Abstract

The use of antibiotics in agriculture and subsequent environmental pollution are associated with the emergence and spread of multidrug-resistant (MDR) bacteria including Escherichia coli. The aim of this study was to detect antimicrobial resistance, resistance genes and mobile genetic elements of 72 E. coli strains isolated from faeces of healthy farm animals. Disk diffusion test showed resistance to ampicillin (59.7%), tetracycline (48.6%), chloramphenicol (16.7%), cefoperazone and ceftriaxone (13.9%), cefepime and aztreonam (12.5%), norfloxacin and ciprofloxacin (8.3%), levofloxacin (6.9%), gentamicin and amikacin (2.8%) among the studied strains. Antibiotic resistance genes (ARGs) were detected by polymerase chain reaction: the prevalence of blaTEM was the highest (59.7% of all strains), followed by tetA (30.6%), blaCTX-M (11.1%), catA1 (9.7%), less than 5% strains contained blaSHV, cmlA, floR, qnrB, qnrS, tetM. 26.4% of E. coli strains had a MDR phenotype. MDR E. coli more often contained class 1 integrons, bacteriophages, conjugative F-like plasmids, than non-MDR strains. ARGs were successfully transferred from faecal E. coli strains into the E. coli Nissle 1917 N4i strain by conjugation. Conjugation frequencies varied from (1.0 ± 0.1) * 10−5 to (7.9 ± 2.6) * 10−4 per recipient. Monitoring mobile genetic elements of E. coli for antibiotic resistance is important for farm animal health, as well as for public health and food safety.

  • Ahmed, A. M., Motoi, Y., Sato, M., Maruyama, A., Watanabe, H., Fukumoto, Y. and Shimomoto, T. (2007): Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Appl. Environ. Microbiol. 73, 66866690.

    • Search Google Scholar
    • Export Citation
  • Aldakov, A. and Kondruchina, S. (2020): Treatment of chronic bronchial pneumonia in calves. Vestnik BSAU. 4, 7376.

  • Aleisa, A. M., Ashgan, M. H., Alnasserallah, A. A., Mahmoud, M. H. and Moussa, I. M. (2013): Molecular detection of β-lactamases and aminoglycoside resistance genes among Escherichia coli isolates recovered from medicinal plant. Afr. J. Microbiol. Res. 7, 23052310. https://doi.org/10.5897/AJMR12.1965.

    • Search Google Scholar
    • Export Citation
  • Allen, V. G., Farrell, D. J., Rebbapragada, A., Tan, J., Tijet, N., Perusini, S. J., Towns, L., Lo, S., Low, D. E. and Melano, R. G. (2011): Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob. Agents Chemother. 55, 703712.

    • Search Google Scholar
    • Export Citation
  • Andriukov, B. G., Besednova, N. N. and Zaporozhets, T. S. (2022): Mobile genetic elements of prokaryotes and their role in the formation of antibiotic resistance in pathogenic bacteria. Antibiot. Chemother. 67, 6274.

    • Search Google Scholar
    • Export Citation
  • Bashahun, G. M. and Amina, A. (2017): Colibacillosis in calves: a review of literature. J. Anim. Sci. Vet. Med. 2, 6271.

  • Cao, H., Bougouffa, S., Park, T. J., Lau, A., Tong, M. K., Chow, K. H. and Ho, P. L. (2022): Sharing of antimicrobial resistance genes between humans and food animals. mSystems. 7, e0077522.

    • Search Google Scholar
    • Export Citation
  • Cattoir, V., Poirel, L. and Nordmann, P. (2008): Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob. Agents Chemother. 52, 38013804.

    • Search Google Scholar
    • Export Citation
  • Chantziaras, I. Boyen, F., Callens, B. and Dewulf, J. (2014): Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J. Antimicrob. Chemother. 69, 827834.

    • Search Google Scholar
    • Export Citation
  • Čitar, M. (2010): Virulentni dejavniki izolatov bakterije Escherichia coli iz blata zdravih ljudi // Biotehniška fakulteta. Ljubljana, pp. 97.

    • Search Google Scholar
    • Export Citation
  • Essack, S. Y. (2018): Environment: the neglected component of the One Health triad. Lancet Planet. Health. 2, e238e239.

  • Ewers, C., Bethe, A., Semmler, T., Guenther, S. and Wieler, L. H. (2012): Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin. Microbiol. Infect. 18, 646655.

    • Search Google Scholar
    • Export Citation
  • Firoozeh, F., Zibaei, M. and Soleimani-Asl, Y. (2014): Detection of plasmid-mediated qnr genes among the quinolone-resistant Escherichia coli isolates in Iran. J. Infect. Dev. Ctries. 8, 818822.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. A. J., Dierikx, C. M., van Essen-Zandbergen, A., Mevius, D., Stegeman, A., Velkers, F. C. and Klinkenberg, D. (2019): Competition between Escherichia coli populations with and without plasmids carrying a gene encoding extended-spectrum beta-lactamase in the broiler chicken gut. Appl. Environ. Microbiol. 85, e00892–19.

    • Search Google Scholar
    • Export Citation
  • Guerra, B., Junker, E., Schroeter, A., Malorny, B., Lehmann, S. and Helmuth, R. (2003): Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 52, 489492.

    • Search Google Scholar
    • Export Citation
  • Hendriksen, R. S., Bangtrakulnonth, A., Pulsrikarn, C., Pornreongwong, S., Hasman, H., Song, S. W. and Aarestrup, F. M. (2008): Antimicrobial resistance and molecular epidemiology of Salmonella rissen from animals, food products and patients in Thailand and Denmark. Foodborne Pathog. Dis. 5, 605619.

    • Search Google Scholar
    • Export Citation
  • Jalil, A., Gul, S., Bhatti, M. F., Siddiqui, M. F. and Adhan, F. (2023): High occurrence of multidrug-resistant Escherichia coli strains in bovine fecal samples from healthy cows serves as rich reservoir for AMR transmission. Antibiotics 12(1). https://doi.org/10.3390/antibiotics12010037.

    • Search Google Scholar
    • Export Citation
  • Karimi Dehkordi, M., Halaji, M. and Nouri, S. (2020): Prevalence of class 1 integron in Escherichia coli isolated from animal sources in Iran: a systematic review and meta-analysis. Trop. Med. Health. 48, 16.

    • Search Google Scholar
    • Export Citation
  • Kathayat, D., Lokesh, D., Ranjit, S. and Rajashekara, G. (2021): Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens. 10, 467.

    • Search Google Scholar
    • Export Citation
  • Kenzaka, T. and Tani, N. (2010): High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 4, 648659.

    • Search Google Scholar
    • Export Citation
  • Koo, H. J. and Woo, G. J. (2012): Characterization of antimicrobial resistance of Escherichia coli recovered from foods of animal and fish origin in Korea. J. Food Prot. 75: 966972.

    • Search Google Scholar
    • Export Citation
  • Kuznetsova, M. V., Gizatullina, J. S., Nesterova, L. Y. and Starčič Erjavec, M. (2020): Escherichia coli isolated from cases of colibacillosis in Russian poultry farms (Perm Krai): sensitivity to antibiotics and bacteriocins. Microorganisms. 8, 741.

    • Search Google Scholar
    • Export Citation
  • Kuznetsova, M. V., Karpunina, T. I., Pospelova, S. V., Afanasievskaya, E. V., Gorowitz, E. S. and Demakov, V. A. (2010): Specific diversity and antibiotic sensitivity of Gram-negative bacteria isolated from poultry plants. NSU Vestnik. 8, 7077.

    • Search Google Scholar
    • Export Citation
  • Kuznetsova, M. V., Mihailovskaya, V. S., Remezovskaya, N. B. and Starčič Erjavec, M. (2022): Bacteriocin-producing Escherichia coli isolated from the gastrointestinal tract of farm animals: prevalence, molecular characterization and potential for application. Microorganisms. 10, 1558.

    • Search Google Scholar
    • Export Citation
  • Lévesque, C., Piché, L., Larose, C. and Roy, P. H. (1995): PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39, 185191.

    • Search Google Scholar
    • Export Citation
  • Lv, C., Shang, J., Zhang, W., Sun, B., Li, M., Guo, C., Zhou, N., Guo, X., Huang, S. and Zhu, Y. (2022): Dynamic antimicrobial resistant patterns of Escherichia coli from healthy poultry and swine over 10 years in Chongming Island, Shanghai. Infect. Dis. Poverty. 11, 98.

    • Search Google Scholar
    • Export Citation
  • Lyimo, B., Buza, J., Subbiah, M., Temba, S., Kipasika, H., Smith, W. and Call, D. R. (2016): IncF plasmids are commonly carried by antibiotic resistant Escherichia coli isolated from drinking water sources in Northern Tanzania. Int. J. Microbiol. 2016, 3103672.

    • Search Google Scholar
    • Export Citation
  • Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T. and Monnet, D. L. (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268281.

    • Search Google Scholar
    • Export Citation
  • Makarov, D. A., Ivanova, O. E., Karabanov, S. Y., Gergel, M. A. and Pomazkova, A. V. (2020): Antimicrobial resistance of commensal Escherichia coli from food-producing animals in Russia. Vet. World. 13, 20532061.

    • Search Google Scholar
    • Export Citation
  • Marti, E., Variatza, E. and Balcázar, J. L. (2014): Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment. Clin. Microbiol. Inf. 20, O456O459.

    • Search Google Scholar
    • Export Citation
  • Martínez-Vázquez, A. V., Vázquez-Villanueva, J., Leyva-Zapata, L. M., Barrios-García, H., Rivera, G. and Bocanegra-García, V. (2021): Multidrug resistance of Escherichia coli strains isolated from bovine feces and carcasses in Northeast Mexico. Front. Vet. Sci. 8, 643802.

    • Search Google Scholar
    • Export Citation
  • Miranda, C., Igrejas, G. and Poeta, P. (2023): Bovine colostrum: human and animal health benefits or route transmission of antibiotic resistance-One Health perspective. Antibiotics (Basel). 12, 1156.

    • Search Google Scholar
    • Export Citation
  • Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., Hafez, H. M. and El-Adawy, H. (2017): Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog. 9, 57.

    • Search Google Scholar
    • Export Citation
  • Moniri, R. and Dastehgoli, K. (2005): Fluoroquinoloneresistant Escherichia coli isolated from healthy broilers with previous exposure to fluoroquinolones: is there a link? Microb. Ecol. Health Dis. 17, 6974.

    • Search Google Scholar
    • Export Citation
  • Muloi, D. M., Hassell, J. M., Wee, B. A, Ward, M. J., Bettridge, J. M. and Woolhouse, M. E. (2022): Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya. BMC Med. 20, 471.

    • Search Google Scholar
    • Export Citation
  • Nikulina, N. B. and Aksenova, V. M. (2019): The causes of cow diseases in the farms of Permskiy Kray. Perm Agrarian Bulletin. 4, 113119.

    • Search Google Scholar
    • Export Citation
  • Saeed, M., Haque, A. and Ali, A. (2009): A profile of drug resistance genes and integrons in E. coli causing surgical wound infections in the Faisalabad region of Pakistan. J. Antibiot. 62, 319323.

    • Search Google Scholar
    • Export Citation
  • Santos, A. C., Santos, F. F., Silva, R. M. and Gomes, T. A. T. (2020): Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front. Cell. Infect. Microbiol. 10, 339.

    • Search Google Scholar
    • Export Citation
  • Schaufler, K., Semmler, T., Wieler, L. H., Trott, D. J., Pitout, J., Peirano, G., Bonnedahl, J., Dolejska, M., Literak, I., Fuchs, S., Ahmed, N., Grobbel, M., Torres, C., McNally, A., Pickard, D., Ewers, C., Croucher, N. J., Corander, J. and Guenther, S. (2019): Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob. Agents Chemother. 63, 1.

    • Search Google Scholar
    • Export Citation
  • Scott, H. M., Acuff, G., Bergeron, G., Bourassa, M. W., Gill, J., Graham, D. W., Kahn, L. H., Morley, P. S., Salois, M. J., Simjee, S., Singer, R. S., Smith, T. C., Storrs, C. and Wittum, T. E. (2019): Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. N. Y. Acad. Sci. 144, 816.

    • Search Google Scholar
    • Export Citation
  • Sørum, H. and Sunde, M. (2001): Resistance to antibiotic in the normal flora of animals. Vet Res. 32, 227241.

  • Strahilevitz, J., Jacoby, G. A., Hooper, D. C. and Robicsek, A. (2009): Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664689.

    • Search Google Scholar
    • Export Citation
  • Sun, C., Cui, M., Zhang, S., Liu, D., Fu, B., Li, Z., Bai, R., Wang, Y., Wang, H., Song, L., Zhang, C., Zhao, Q., Shen, J., Xu, S., Wu, C. and Wang, Y. (2020): Genomic epidemiology of animal-derived tigecycline-resistant Escherichia coli across China reveals recent endemic plasmid-encoded tet(X4) gene. Commun. Biol. 3, 412.

    • Search Google Scholar
    • Export Citation
  • Szmolka, A. and Nagy, B. (2013): Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol. 4, 258.

    • Search Google Scholar
    • Export Citation
  • Thaker, M., Spanogiannopoulos, P. and Wright, G. D. (2010): The tetracycline resistome. Cell Mol. Life Sci. 67, 419431.

  • Xu, C., Kong, L., Liao, Y., Tian, Y., Wu, Q., Liu, H. and Wang, X. (2022) Mini-review: antibiotic-resistant Escherichia coli from farm animal-associated sources. Antibiotics. 11, 1535.

    • Search Google Scholar
    • Export Citation
  • Yang, F., Zhang, S., Shang, X., Wang, L., Li, H. and Wang, X. (2017): Characteristics of quinolone-resistant Escherichia coli isolated from bovine mastitis in China. J. Dairy Sci. 101, 62446252.

    • Search Google Scholar
    • Export Citation
  • Yu, B., Zhang, Y., Yang L., Xu, J. and Bu, S. (2021): Analysis of antibiotic resistance phenotypes and genes of Escherichia coli from healthy swine in Guizhou, China. Onderstepoort J. Vet. Res. 88, e1e8.

    • Search Google Scholar
    • Export Citation
  • Zabrovskaya, A. V. and Egorova, S. A. (2018): Antimicrobial resistance mechanisms in bacteria strains isolated from farm animals. Russ. J. Infec. Imm. 8, 612613.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., Wang, C. G., Lv, J. C., Wang, R. S. and Zhong, X. H. (2012): Survey on tetracycline resistance and antibiotic-resistant genotype of avian Escherichia coli in North China. Poultry Sci. 91, 27742777.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Ferenc BASKA

Editorial assistant: Szilvia PÁLINKÁS

 

Editorial Board

  • Mária BENKŐ (Acta Veterinaria Hungarica, Budapest, Hungary)
  • Gábor BODÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Béla DÉNES (University of Veterinary Medicine, Budapest Hungary)
  • Edit ESZTERBAUER (Veterinary Medical Research Institute, Budapest, Hungary)
  • Hedvig FÉBEL (University of Veterinary Medicine, Budapest, Hungary)
  • László FODOR (University of Veterinary Medicine, Budapest, Hungary)
  • János GÁL (University of Veterinary Medicine, Budapest, Hungary)
  • Balázs HARRACH (Veterinary Medical Research Institute, Budapest, Hungary)
  • Peter MASSÁNYI (Slovak University of Agriculture in Nitra, Nitra, Slovak Republic)
  • Béla NAGY (Veterinary Medical Research Institute, Budapest, Hungary)
  • Tibor NÉMETH (University of Veterinary Medicine, Budapest, Hungary)
  • Zsuzsanna NEOGRÁDY (University of Veterinary Medicine, Budapest, Hungary)
  • Dušan PALIĆ (Ludwig Maximilian University, Munich, Germany)
  • Alessandra PELAGALLI (University of Naples Federico II, Naples, Italy)
  • Kurt PFISTER (Ludwig-Maximilians-University of Munich, Munich, Germany)
  • László SOLTI (University of Veterinary Medicine, Budapest, Hungary)
  • József SZABÓ (University of Veterinary Medicine, Budapest, Hungary)
  • Péter VAJDOVICH (University of Veterinary Medicine, Budapest, Hungary)
  • János VARGA (University of Veterinary Medicine, Budapest, Hungary)
  • Štefan VILČEK (University of Veterinary Medicine in Kosice, Kosice, Slovak Republic)
  • Károly VÖRÖS (University of Veterinary Medicine, Budapest, Hungary)
  • Herbert WEISSENBÖCK (University of Veterinary Medicine, Vienna, Austria)
  • Attila ZSARNOVSZKY (Szent István University, Gödöllő, Hungary)

ACTA VETERINARIA HUNGARICA
Institute for Veterinary Medical Research
Centre for Agricultural Research
Hungarian Academy of Sciences
P.O. Box 18, H-1581 Budapest, Hungary
Phone: (36 1) 287 7073 (ed.-in-chief) or (36 1) 467 4081 (editor)

E-mail: acta.veterinaria@univet.hu (ed.-in-chief)

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Focus On: Veterinary Science and Medicine
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

2023  
Web of Science  
Journal Impact Factor 0.7
Rank by Impact Factor Q3 (Veterinary Sciences)
Journal Citation Indicator 0.4
Scopus  
CiteScore 1.8
CiteScore rank Q2 (General Veterinary)
SNIP 0.39
Scimago  
SJR index 0.258
SJR Q rank Q3

Acta Veterinaria Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 832 EUR / 916 USD
Print + online subscription: 960 EUR / 1054 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Veterinaria Hungarica
Language English
Size A4
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6290 (Print)
ISSN 1588-2705 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 0 0 0
May 2024 0 0 0
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 0 0 0
Sep 2024 1330 27 28
Oct 2024 154 11 11