Authors:
Erzsébet OsztoicsMTA Talajtani és Agrokémiai Kutatóintézete, Budapest

Search for other papers by Erzsébet Osztoics in
Current site
Google Scholar
PubMed
Close
,
Marianna MagyarMTA Talajtani és Agrokémiai Kutatóintézete, Budapest

Search for other papers by Marianna Magyar in
Current site
Google Scholar
PubMed
Close
,
Krisztina Rajkainé VéghMTA Talajtani és Agrokémiai Kutatóintézete, Budapest

Search for other papers by Krisztina Rajkainé Végh in
Current site
Google Scholar
PubMed
Close
,
Julianna CsillagMTA Talajtani és Agrokémiai Kutatóintézete, Budapest

Search for other papers by Julianna Csillag in
Current site
Google Scholar
PubMed
Close
,
Tünde TakácsMTA Talajtani és Agrokémiai Kutatóintézete, Budapest

Search for other papers by Tünde Takács in
Current site
Google Scholar
PubMed
Close
, and
Péter CsathóMTA Talajtani és Agrokémiai Kutatóintézete, Budapest

Search for other papers by Péter Csathó in
Current site
Google Scholar
PubMed
Close
Restricted access
  • Abbott, L. K. & Robson, A. D., 1985. Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 99. 245255.

    • Search Google Scholar
    • Export Citation
  • Aguilar, S. & Van Diest, A., 1981. Rock phosphate mobilization induced by the alkaline uptake pattern of legumes utilizing symbiontically fixed nitrogen. Plant and Soil. 61. 2742.

    • Search Google Scholar
    • Export Citation
  • Alloush, G. A. & Clark, R. B., 2001. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun. Soil Sci. Plant Anal. 32. 231254.

    • Search Google Scholar
    • Export Citation
  • Amer, F. et al., 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-equilibration. Plant and Soil. 6. 391408.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L., Kussow, W. R. & Corey, R. B., 1985. Phosphate rock dissolution in soil. Indications from plant growth studies. Soil Sci. Soc. Am. J. 49. 918925.

    • Search Google Scholar
    • Export Citation
  • Anderson, G. C. & Sale, P. W. G., 1993. Application of the Kirk and Nye phosphate rock dissolution model. Fert. Res. 35. 6166.

  • Azcón-Aguilar, C. & Barea, J. M., 1992. Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Mycorrhizal Functioning: An Integrative Plant-Fungal Process. (Ed.: ALLEN, M. I.) 163198. Chapman Hall. New York.

    • Search Google Scholar
    • Export Citation
  • Balláné KORNIS H. & Sarkadi J., 1951. Foszforittal és apatittal érlelt istállótrágyák laboratóriumi vizsgálata. Agrokémia és Talajtan. 1. 471477.

    • Search Google Scholar
    • Export Citation
  • Bangar, K. C., Yadav, K. S. & Mishra, M. M., 1985. Transformation of rock phosphate during composting and the effect of humic acid. Plant and Soil. 85. 259266.

    • Search Google Scholar
    • Export Citation
  • Barbarick, K. A., Lai, I. M. & Eberl, D. D., 1990. Exchange fertilizer (phosphate rocks plus ammonium-zeolite) effects on sorghum-Sudangrass. Soil Sci. Soc. Am. J. 54. 911915.

    • Search Google Scholar
    • Export Citation
  • Barrow, N. J. & Shaw, T. C., 1975. The slow reactions between soil and anions. 2. Effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Sci. 119. 167177.

    • Search Google Scholar
    • Export Citation
  • Bekele, T. et al., 1983. An evaluation of plant-borne factors promoting the solubilization of alkaline rock phosphates. Plant and Soil. 75. 361378.

    • Search Google Scholar
    • Export Citation
  • Bertrand, I. et al., 1999. Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic phosphated calcite and goethite. Plant and Soil. 211. 111119.

    • Search Google Scholar
    • Export Citation
  • Bésán J.-NÉ , 1992. Nyersfoszfát bázisú mûtrágyák szerepe a gazdaságos mûtrágyázásban. Agrofórum 1992/1. Különszám. 4143.

    • Search Google Scholar
    • Export Citation
  • Bethlenfalvay, G. J., Brown, M. S. & Pacovsky, R. S., 1982. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: Development of the host plant. Phytopathol. 72. 889893.

    • Search Google Scholar
    • Export Citation
  • Bolan, N. S., Robson, A. D. & Barrow, N. J., 1987. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant and Soil. 99. 401410.

    • Search Google Scholar
    • Export Citation
  • Bolan, N. S., White, R. E. & Hedley, M. J., 1990. A review of the actual and potenzial use of phosphate rocks as fertilizers for direct application in Australia and New Zealand. Aust. J. Agric. Res. 30. 297313.

    • Search Google Scholar
    • Export Citation
  • Bolland, M. D. A. , 1993. Summary of research on soil testing for rock phosphate fertilizers in Western Australia. Fertilizer Res. 35. 8391.

    • Search Google Scholar
    • Export Citation
  • Bolland, M. D. A., Gilkes, R. J. & Allen, D. G., 1988. The residual value of superphosphate and rock phosphate for lateritic soils and its evaluation using three soil phosphate test. Fert. Res. 15. 253280.

    • Search Google Scholar
    • Export Citation
  • Bolland, M. D. A., Kumar, V. & GILKES R. J., 1994. A comparison of five soil phosphorus tests for crop species for soil previously fertilized with superphosphate and rock phosphate. Fert. Res. 37. 125132.

    • Search Google Scholar
    • Export Citation
  • Bolland, M. D. A. et al., 1992. Agronomic effectiveness of partially acidulated rock phosphate and fused calcium-magnesium phosphate compared with superphosphate. Fert. Res. 32. 169193.

    • Search Google Scholar
    • Export Citation
  • Bray, R. H. & Kurtz, L. T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59. 3945.

  • Buzás, I.-NÉ, CSERNÁTONY, CS.-NÉ & HERCZEG A., 1986. A magyarországi talajok pH csökkenése. Agrokémia és Talajtan. 35. 6371.

  • Cakmak, I. & Marschner, H., 1990. Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants. Plant and Soil. 129. 261268.

    • Search Google Scholar
    • Export Citation
  • Caro, J. H. & Hill, W. L., 1956. Characteristics and fertilizer value of phosphate rock from different fields. J. Agric. Food Chem. 4. 684687.

    • Search Google Scholar
    • Export Citation
  • Casanova, E. F. , 1995. Agronomic evaluation of fertilizers with special reference to natural and modified phosphate rock. Fertilizer Res. 41. 211218.

    • Search Google Scholar
    • Export Citation
  • Cathcart, J. B. , 1980. The phosphate industry of the United States. In: The Role of Phosphorus in Agriculture. (Eds.: KHASAWNEH, F. E., SAMPLE, E. C. & KAMPRATH, E. J.) 1941. Soil Sci. Soc. Am. Madison, WI.

    • Search Google Scholar
    • Export Citation
  • Chang, S. C. & Jackson, M. L., 1957. Fractionation of soil phosphorus. Soil Sci. 84. 133144.

  • Chien, S. H. , 1977. Dissolution rates of phosphate rocks. Soil Sci. Soc. Am. J. 41. 656657.

  • Chien, S. H. , 1978. Interpretation of Bray I-extractable phosphorus from acid soil treated with phosphate rocks. Soil Sci. 126. 3439.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H. , 1979. Dissolution of phosphate rock in acid soils as influenced by nitrogen and potassium fertilizers. Soil Sci. 127. 371375.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H. , 1993. Solubility assessment for fertilizer containing phosphate rock. Fert. Res. 35. 9399.

  • Chien, S. H. & Black, C. A., 1976. Free energy of formation of carbonate apatites in some phosphate rocks. Soil Sci. Soc. Am. J. 40. 234239.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H. & Hammond, L. L., 1978. A comparison of various laboratory methods for predicting the agronomic potential of phosphate rocks for direct application. Soil Sci. Soc. Am. J. 42. 935939.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H. & Menon, R. G., 1995. Factors affecting the agronomic effectivnes of phosphate rock for direct application. Fert. Res. 41. 227234.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H., Clayton, W. R. & Mcclellan, G. H., 1980. Kinetics of dissolution of phosphate rocks in soils. Soil Sci. Soc. Am. J. 44. 260264.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H., Sale, P. W. G. & Friesen, D. K., 1990. A discussion of the methods for comparing the relative effectiveness of phosphate fertilizers varying in solubility. Fert. Res. 24. 149157.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H. et al., 1987a. Greenhouse evaluation of phosphorus availability from compacted phosphate rocks with urea or with urea and triple superphosphate. Fert. Res. 14. 245256.

    • Search Google Scholar
    • Export Citation
  • Chien, S. H. et al., 1987b. Effects of combinations of triple superphosphate and reactive phosphate rocks on yield and phosphorus uptake by corn. Soil Sci. Soc. Am. J. 51. 16561658

  • Clark, R. B. & Zeto, S. K., 2000. Mineral acquisition by Arbuscular Mycorrhizal plants. J. Plant Nutr. 23. 867902.

  • Colwell, J. D. , 1963. The estimation of phosphorus fertilizer requirement in southern New South Wales by soil analysis. Aust. J. Exp. Agric. Anim. Husb. 3. 190197.

    • Search Google Scholar
    • Export Citation
  • Cooper, K. M. & Tinker, P. B., 1978. Translocation and transfer of nutrients in vesiculararbuscular mycorhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol. 81. 4352.

    • Search Google Scholar
    • Export Citation
  • Cornforth, I. S., Smith, G. S. & Fox, R. L., 1983. Phosphate extractability and availability to plants in phosphate rock-treated soils. New Zeland Journal of Experimental Agriculture. 11. 243246.

    • Search Google Scholar
    • Export Citation
  • Csathó P. & Magyar M., 1999. A reaktív algériai nyersfoszfát alkalmazásának agronómiai és környezeti vonatkozásai. In: XIII. Országos Környezetvédelmi Konferencia és Szakkiállítás. (Szerk.: ELEK GY. & VÉCSI B.) 121131. MTESz. Siófok.

    • Search Google Scholar
    • Export Citation
  • Csathó, P. & Németh, T., 1997. The direct and residual effect of different P-sources in Hungarian field trials. In: Proc. 11th World Fertilizer Congress. (Eds.: CLEEMPUT von, O. et al.) 101108. Ghent, Belgium.

    • Search Google Scholar
    • Export Citation
  • Dalal, R. C. , 1985. Comparative prediction of yield response and phosphorus uptake from soil using anion- and cation-anion-exchange resins. Soil Sci. 139. 227231.

    • Search Google Scholar
    • Export Citation
  • De Swart, P. H. & Van Diest, A., 1987. The rock-phosphate solubilizing capacity of Pueraria javanica as affected by soil pH, superphosphate priming effect and symbiontic N2 fixation. Plant and Soil. 100. 135147.

    • Search Google Scholar
    • Export Citation
  • Dinkelaker, B., Römheld, V. & Marschner, H., 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell. Environ. 12. 285292.

    • Search Google Scholar
    • Export Citation
  • Dorner B. , 1925. A kereskedelmi trágyák történelme, gyártása és használata. Athenaeum. Budapest.

  • Egner, H., Riehm, H. & Domingo, W. R., 1960. Untersuchungen über die Chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden. II. Chemische Extraktionsmetoden zu Phosphor- und Kaliumbestimmung. K. Lantbr. Hogsk. Annlr. 26. 199215.

    • Search Google Scholar
    • Export Citation
  • Engelstad, O. P., Jugsujinda, A. & De Datta, S. K., 1974. Response by flooded rice to phosphate rocks varying in citrate solubility. Soil Sci. Soc. Amer. Proc. 38. 524529.

    • Search Google Scholar
    • Export Citation
  • Feng, G. & Xiong, L., 2002. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native phosphates in acidic soils. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 211233. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Fotyma, M., Gosek, S. & Boreczek, B., 2002. Evaluation of soil and fertilizer-derived phosphorus availability, particularly from rock phosphate, by biological and chemical methods. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 434439. IAEA-TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Fotyma, M., Gosek, S. & Szewczyk, M., 1996. Preliminary experience with calcium chloride method in Poland. Commun. Soil Sci. Plant Anal. 27. 13871401.

    • Search Google Scholar
    • Export Citation
  • Föhse, D., Claassen, N. & Jungk, A., 1991. Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation–anion balance for phosphorus influx in seven plant species. Plant and Soil. 132. 261272.

    • Search Google Scholar
    • Export Citation
  • Friesen, D. K., Sale, P. W. G. & Blair, G. J., 1987. Long-term greenhouse evaluation of partially acidulated phosphate rock fertilizers. II: Effect of cogranulation with elemental S on availability of P from two phosphate rocks. Fert. Res. 13. 4554.

    • Search Google Scholar
    • Export Citation
  • Füleky GY. , 1976a. A talaj könnyen oldható P-tartalmának meghatározására használt kivonószerek vizsgálata. I. Az AL-, DL-, CAL-, Bray I-, NaHCO3-os, NaHCO3+NH4F-os és CaCl2-os kivonószer vizsgálata közvetlen kioldással. Agrokémia és Talajtan. 25. 271283.

    • Search Google Scholar
    • Export Citation
  • Füleky GY. , 1976b. A talaj könnyen oldható P-tartalmának meghatározására használt kivonószerek vizsgálata. II. Az AL-, DL-, CAL-, Bray I-, NaHCO3-os, NaHCO3+NH4F-os és CaCl2-os kivonószerrel oldott P és a szervetlen foszfátfrakciók korrelációja. Agrokémia és Talajtan. 25. 284295.

  • Füleky GY. , TOLNER L. & DÖMSÖDI J., 1980. A talaj foszforszolgáltatása kinetikájának mérése anioncserélo mugyantával. Agrokémia és Talajtan. 29. 273279.

    • Search Google Scholar
    • Export Citation
  • Gahoonia, T. S. & Nielsen, N. E., 1992. Control of pH at the soil–root interface. Plant and Soil. 140. 4954.

  • Gardner, W. K., Parberry, D. G. & Barber, D. A., 1982. The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant and Soil. 68. 1932.

    • Search Google Scholar
    • Export Citation
  • Gianinazzi-Pearson, V. et al., 1981. Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybeans. Physiol. Vg. 16. 3334.

    • Search Google Scholar
    • Export Citation
  • Grinsted, M. J. et al., 1982. Plant induced changes in the rhizosphere of rape.I.pH change and the increase in P conentration in the soil solution. New Phytol. 91. 1929.

    • Search Google Scholar
    • Export Citation
  • Guissou, T. et al., 1999. Rock phosphate and vesicular-arbuscular mycorrhiza effects on growth and mineral nutrition of Zizyphus mauritiana Lam. in an alkaline soil. Ann. Sci. For. 55. 925931.

    • Search Google Scholar
    • Export Citation
  • Hagin, J. & Katz, S., 1985. Effectiveness of partially acidulated phosphate rock as a P source to plants in calcareous soils. Fert. Res. 8. 117128.

    • Search Google Scholar
    • Export Citation
  • Hammond, L. L., CHIEN , S. H. & Mokwunye, A. U., 1986. Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv. Agron. 40. 89140.

    • Search Google Scholar
    • Export Citation
  • Hammond, L. L., Menon, R. G. & Sissingh, H. A., 1985. Determination of plant available phosphorus by the Pi soil test. Agron. Absts. 173.

    • Search Google Scholar
    • Export Citation
  • Haynes, R. J. , 1992. Relative ability of a range of crop species to use phosphate rock and monocalcium phosphate as P sources when grown in soils. J. Sci. Food Agric. 74. 17.

    • Search Google Scholar
    • Export Citation
  • Hedley, M. J. & Bolan, N. S., 1997. Developments in some aspects of reactive phosphate rock research and use in New Zealand. Australian J. Experimental Agriculture. 37. 861884.

    • Search Google Scholar
    • Export Citation
  • Hedley, M. J., Nye, P. H. & White, R. E., 1982. Plant induced changes in the rhizosphere of rape. II. Origin of the pH change. New Phytol. 91. 3144.

    • Search Google Scholar
    • Export Citation
  • Hedley, M. J. et al., 1995. Phosphorus fertility management in agroecosystems. In: Phosphorus in the Global Environment. (Ed.: TISSEN, H.) 5962. Scope, John Wiley & Sons, Ltd. New York.

    • Search Google Scholar
    • Export Citation
  • Hinsinger, P. & Gilkes, R. J., 1995. Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soil. Aust. J. Agric. Res. 33. 477489.

    • Search Google Scholar
    • Export Citation
  • Hinsinger, P. & Gilkes, R. J., 1996. Root-induced mobilisation of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur. J. Soil Sci. 47. 533544.

    • Search Google Scholar
    • Export Citation
  • Hinsinger, P. & Gilkes, R. J., 1997. Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate. Geoderma. 75. 231239.

    • Search Google Scholar
    • Export Citation
  • Hoffland, E. , 1992. Quantitative evaluation of the role of organic acid exudation in the mobilisation of rock phosphate by rape. Plant and Soil. 140. 279289.

    • Search Google Scholar
    • Export Citation
  • Hoffland, E., Findenegg, G. R. & Nelemans, J. A., 1989a. Solubilization of rock phosphate by rape I. Evaluation of the role of the nutrient uptake pattern. Plant and Soil. 113. 155160.

  • Hoffland, E., Findenegg, G. R. & Nelemans, J. A., 1989b. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as response to P-starvation. Plant and Soil. 113. 161165.

  • Houba, V. J. G. et al., 1986. Comparison of soil extractions by 0.01 M CaCl2, by EUF and by some conventional extraction procedures. Plant and Soil. 96. 433477.

    • Search Google Scholar
    • Export Citation
  • Indiati, R. et al., 2001. Effect of time, fertilizer phosphorus sources and fertilization systems on phosphorus extractability of two soils from Hungary. Commun. Soil Sci. Plant Anal. 33. 545560.

    • Search Google Scholar
    • Export Citation
  • Isobe, K. & Tsuboki, Y., 1998. The relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineous and leguminous crops. Japan. J. Crop Sci. 67. 347352.

    • Search Google Scholar
    • Export Citation
  • Jakobsen, I., Abbott, L. K. & Robson, A. D., 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120. 371380.

    • Search Google Scholar
    • Export Citation
  • Jayachandran, K., Schwab, A. P. & Hetrick, B. A. D., 1992. Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 24. 897903.

    • Search Google Scholar
    • Export Citation
  • Jászberényi, I., Loch, J. & Sarkadi, J., 1994. Experiences of 0.01 M calcium-chloride extraction as soil testing procedure in Hungary. Commun. Soil Sci. Plant Anal. 25. 17711777.

    • Search Google Scholar
    • Export Citation
  • Jones, J. B. , 1997. Soil test methods; past, present and future use of soil extractants. Commun. Soil Sci. Plant Anal. 29. 15431552.

    • Search Google Scholar
    • Export Citation
  • Kanabo, I. A. K. & Gilkes, R. J., 1987. The influence of the addition of goethite to soil on the dissolution of North Carolina phosphate rock. Aust. J. Soil Res. 25. 313322.

    • Search Google Scholar
    • Export Citation
  • Kanabo, I. A. K. & Gilkes, R. J., 1988. The effects of moisture regime and incubation time on the dissolution of North Carolina phosphate rock in soil. Aust. J. Soil Res. 25. 153164.

    • Search Google Scholar
    • Export Citation
  • Kato, N., Zapata, F. & Axmann, H., 1995. Evaluation of the agronomic effectiveness of natural and partially acidulated phosphate rocks in several soils using 32P isotopic dilution techniques. Fert. Res. 41. 235242.

    • Search Google Scholar
    • Export Citation
  • Khasawneh, F. E. & Doll, E. C., 1978. The use of phosphate rock for direct application. Adv. Agron. 30. 159206.

  • Kirk, G. J. D. , 1999. A model of phosphate solubilization by organic anion excretion by plant roots. Eur. J. Soil Sci. 50. 369378.

  • Kirk, G. J. D. & Nye, P. H., 1986a. A simple model for predicting the rates of dissolution of sparingly soluble calcium phosphates in soil. I. The basic model. J. Soil Sci. 37. 529540.

  • Kirk, G. J. D. & Nye, P. H., 1986b. A simple model for predicting the rates of dissolution of sparingly soluble calcium phosphates in soil. II. Applications of the model. J. Soil Sci. 37. 541553.

  • Krámer M. , 1962. Adatok az északafrikai (Hyper) és izráeli (Cyklon) foszfátok mutrágyahatásáról. I. Az oldhatóság laboratóriumi vizsgálata. Agrokémia és Talajtan. 11. 345354.

    • Search Google Scholar
    • Export Citation
  • Krámer M. , 1963. Adatok az északafrikai (Hyper) és izráeli (Cyklon) foszfátok mutrágyahatásáról. II. Szemcsefinomság és fajlagos felület vizsgálata. Agrokémia és Talajtan. 12. 275283

    • Search Google Scholar
    • Export Citation
  • Krámer M. & Lamberger I., 1965. Hazai adatok a nyersfoszfátok érvényesülésérol. MTA Agrártud. Oszt. Közlem. 119124.

  • Kreybig L. , 1949. Az istállótrágya foszforsavas erjesztése. Agrártudomány. 1. 609617.

  • Kucey, R. & Bole, J., 1984. Availability of phosphorus from 17 rock phosphates in moderately and weakly acidic soils as determined by 32P dilution, E value, and total P uptake methods. Soil Sci. 138. 180188.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., Gilkes, R. J. & Bolland, M. D. A., 1991. Residual phosphate fertilizer compounds in soils: Their influence on soil tests for available phosphate. Fertilizer Res. 30. 3138.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., Gilkes, R. J. & Bolland, M. D.A., 1992. A comparison of seven soil P tests for plant species with different external P requirements grown on soils containing rock phosphate and superphosphate residues. Fert. Res. 33. 3545.

    • Search Google Scholar
    • Export Citation
  • Lehr, J. R. , 1980. Phosphate raw materials and fertilizers: Part I. A look ahead. In: The Role of Phosphorus in Agriculture (Eds.: KHASAWNEH, F. E., SAMPLE, E. C. & KAMPRATH, E. J.) 81120. ASA-CSSA-SSSA. Madison, WI.

    • Search Google Scholar
    • Export Citation
  • Lehr, J. R. & Mcclellan, G. H., 1972. A revised laboratory reactivity scale for evaluating phosphate rocks for direct application. Bull. Y43., Nat. Fert. Develop. Center. TVA.

    • Search Google Scholar
    • Export Citation
  • Loganathan, P., Hedley, M. J. & Bretherton, M. R., 1994. The agronomic value of cogranulated Christmas island grade C phosphate rock and elemental sulphur. Fert. Res. 39. 22237.

    • Search Google Scholar
    • Export Citation
  • Louis, P. L. , 1993. Availability of fertilizer raw materials. The Fertility Society Proc. No. 336. Peterborough, England.

  • Mackay, A. D., Syers, J. K. & Gregg, P. E. H., 1984. Ability of chemical extraction procedures to assess the agronomic effectiveness of phosphate rock materials. New Zealand J. Agric. Res. 27. 219230.

    • Search Google Scholar
    • Export Citation
  • Mackay, A. D. & Wewala, G. S., 1990. Evaluation of partially acidulated phosphate fertilizers and reactive phosphate rocks for hill pastures. Fert. Res. 21. 149156.

    • Search Google Scholar
    • Export Citation
  • Mackay, A. D. et al., 1984. A comparison of 3 soil testing procedures for estimating the plant availability of phosphorus in soils receiving either superphosphate or phosphate rock. New Zealand J. Agric. Res. 27. 231245.

    • Search Google Scholar
    • Export Citation
  • Mackay, A. D. et al., 1986. A simple model to describe the dissolution of phosphate rock in soils. Soil Sci. Soc. Am. J. 50. 291296.

    • Search Google Scholar
    • Export Citation
  • Mahisarakul, J. et al., 2002. Field assessment of the relative agronomic effectiveness of phosphate rock materials in soybean–maize crop rotation using 32P isotope techniques. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 437449. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Manjunath, A., Hue, N. V. & Habte, M., 1989. Response of Leucaena leucephala to vesicular-arbuscular mycorrhizal colonization and rock phosphate fertilization in an Oxisol. Plant and Soil. 114. 127133.

    • Search Google Scholar
    • Export Citation
  • Marschner, H. , 1997. The soil–root interface (rhizosphere) in relation to mineral nutrition. In: Mineral Nutrition of Higher Plants. (Ed.: MARSCHNER, H.) 537596. Acad. Press. London.

    • Search Google Scholar
    • Export Citation
  • Mártonffy T. & Pekáry K., 1978. Az egyedi és összetett mutrágyák, valamint a hyperfoszfát tápanyag-hatásának összehasonlítása az Egységes Országos Mutrágyázási Tartamkísérletek keretében. Növénytermelés. 27. 247254.

    • Search Google Scholar
    • Export Citation
  • Mcclellan, G. H. & Gremillion, L. R., 1980. Evaluation of phosphate raw materials. In: The Role of Phosphorus in Agriculture. (Eds.: KHASAWNEH, F. E., SAMPLE, E. C. & KAMPRATH, E. J.) 4280. ASA–CSSA–SSSA. Madison, WI.

    • Search Google Scholar
    • Export Citation
  • Mclaughlin, M. J. , 2002a. The Australian reactive phosphate rock project –aims, experimental approach and site characteristics. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 304317. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Mclaughlin, M. J. , 2002b. Measuring P availability in soils fertilized with water-soluble Pfertilizers using 32P methodologies. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 331341.. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Mendoza, R. E. & Pagani, E. A., 1997. Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J. Plant Nutr. 20. 625639.

    • Search Google Scholar
    • Export Citation
  • Menon, R. G. & Chien, S. H., 1990. Phosphorus availability to maize from partially acidulated phosphate rocks and phosphate rocks compacted with triple superphosphate. Plant and Soil. 127. 123128.

    • Search Google Scholar
    • Export Citation
  • Menon, R. G. & Chien, S. H., 1995. Soil testing for available phosphorus in soils where phosphate rock-based fertilisers are used. Fert. Res. 41. 179187.

    • Search Google Scholar
    • Export Citation
  • Menon, R. G., Chien, S. H. & Hammond, L. L., 1990. Development and evaluation of the Pi soil test for plant-available phosphorus. Commun. Soil Sci. Plant Anal. 21. 11311150.

    • Search Google Scholar
    • Export Citation
  • Menon, R. G., Hammond, L. L. & Sissingh, H. A., 1988. Determination of plant available phosphorus by the iron hydroxide-impregnated filter paper soil test. Soil Sci. Soc. Am. J. 52. 110115.

    • Search Google Scholar
    • Export Citation
  • Mokwunye, A. U. & Chien, S. H., 1980. Reactions of partially acidulated phosphate rock with soils from the tropics. Soil Sci. Soc. Am. J. 44. 477482.

    • Search Google Scholar
    • Export Citation
  • Németh, T. & Osztoics, E., 1997. Effect of different phosphorus fertilizer sources on red clover in a pot experiment with six acidic soils. In.: Fertilization for Sustainable Plant Production and Soil Fertility. Proc. 11th Int. World Fertilizer Congress CIEC (Eds.: VAN CLEEMPUT, O. et al.) 419427. Gent, Belgium.

    • Search Google Scholar
    • Export Citation
  • Németh, T., Osztoics, E. & Baczó, GY., 1995. Effect of different P-sources on spring barley in a pot experiment with six acid soils. In: Soil Fertility and Fertilizer Management. Proc. 9th Int. Symp. CIEC (Eds.: WELTE, E. et al.) 99106. Kusadasi, Turkey.

    • Search Google Scholar
    • Export Citation
  • Németh, T. et al., 2001. Long-term field evaluation of phosphate rock and superphosphate use strategies in acid soils of Hungary: Two comparative field trials. Nutrient Cyclings in Agro- Ecosystems. 59. (In print)

    • Search Google Scholar
    • Export Citation
  • Németh, T. et al., 2002. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary: incubation and pot experiments. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 450467. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Nye, P. H. , 1979. Diffusion of ions and uncharged solutes in soils and soil clays. Adv. Agron. 31. 225272.

  • Olsen, S. R. et al., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. Agric. Circular No. 939. Washington, D. C.

    • Search Google Scholar
    • Export Citation
  • Osztoics A.-NÉ & Varró T., 1986a. A talaj izotóposan kicserélheto foszfortartalmának meghatározása. Agrokémia és Talajtan. 35. 255273.

  • Osztoics A.-NÉ & Varró T., 1986b. Foszfor izotópcsere kinetikája talajokon. Agrokémia és Talajtan. 35. 277291.

  • Osztoics A.-NÉ , Csathó P. & Németh T., 1997. Az algériai nyersfoszfát és a szuperfoszfát hatásának vizsgálata. I. A foszfortrágyák összehasonlító vizsgálata a tavaszi árpa termésére és foszfortartalmára tenyészedény-kísérletben különbözo talajokon. Agrokémia és Talajtan. 46. 289310.

    • Search Google Scholar
    • Export Citation
  • Osztoics A.-NÉ , RADIMSZKY L. & NÉMETH T., 2000. Szuperfoszfát és nyersfoszfát hatása két hazai talaj víz- és AL-oldható P-tartalmára inkubációs kísérletben. Agrokémia és Talajtan. 49. 107126.

    • Search Google Scholar
    • Export Citation
  • Osztoics A.-NÉ et al., 2001. Az algériai nyersfoszfát és a szuperfoszfát hatásának vizsgálata. II. A foszfortrágyák hatása a vöröshere termésére és foszfortartalmára tenyészedény-kísérletben. Agrokémia és Talajtan. 50. 247266.

    • Search Google Scholar
    • Export Citation
  • Perrott, K. W., Saggar, S. & Menon, R. G., 1993. Evaluation of soil phosphate status where phosphate rock based fertilizers have been used. Fertilizer Res. 35. 6782.

    • Search Google Scholar
    • Export Citation
  • Péterfalvi A. , Debreceni B. & Bésán J-NÉ, 1988. Nyersfoszfáttartalmú szuperfoszfátok. Agrokémia és Talajtan. 36-37. 313322.

  • Page, A. L. & Chang, A. C., 1978. Trace elements impact on plants during cropland disposal of sewage sludges. In: Effect of Heavy Metal Pollution on Plants. Vol. 1. Effect of Trace Metals on Plant Function. (Ed.: LEPP, N. W.) 77109. Applied Sci. Publ. London–New Yersey.

    • Search Google Scholar
    • Export Citation
  • Posta K. , 1997. Az endomikorrhiza szerepe a környezeti stresszhatások kivédésében. Agrokémia és Talajtan. 46. 359370.

  • Rajan, S. S. S. , 1981. Use of low grade phosphate rocks as biosuper fertilizers. Fertilizer Res. 2. 199210.

  • Rajan, S. S. S., Watkinson, J. H. & Sinclair, A. G., 1996. Phosphate rocks for direct application to soils. Adv. Agron. 57. 77159.

  • Rajan, S. S. S. et al., 1991. Influence of pH, time and rate of application on phosphate rock dissolution and availability to pastures. II. Soil chemical studies. Fert. Res. 28. 95101.

    • Search Google Scholar
    • Export Citation
  • Rajan, S. S. S. et al., 1992. Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks. Fert. Res. 32. 291302.

    • Search Google Scholar
    • Export Citation
  • Robinson, J. S. & Syers, J. K., 1990. A critical evaluation of the factors influencing the dissolution of gafsa phosphate rock. J. Soil Sci. 41. 597605.

    • Search Google Scholar
    • Export Citation
  • Römheld, V. , 1986. pH-Veränderungen in der Rhisosphäre verschiedener Kulturpflanzenarten in Abhängigkeit vom Nährstoffangebot. Potash Rev. 55. 18.

    • Search Google Scholar
    • Export Citation
  • Ryan, M. H., Chilvers, G. A. & Dumaresq, D. C., 1994. Colonisation of wheat by VAmycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant and Soil 160. 3340.

    • Search Google Scholar
    • Export Citation
  • Saggar, S., Hedley, M. J. & White, R. E., 1990. A simplified resin membrane technique for extracting phosphorus from soil. Fertilizer Res. 24. 173180.

    • Search Google Scholar
    • Export Citation
  • Saggar, S., Hedley, M. J. & White, R. E., 1992a. Development and evaluation of an improved soil test for phosphorus: 1. The influence of phosphorus fertilizer solubility and soil properties on the extractability of soil P. Fertilizer Res. 33. 8191.

  • Saggar, S. et al., 1992b. Development and evaluation of an improved soil test for phosphorus: 2. Comparison of Olsen and mixed cation–anion exchange resin tests for predicting the yield of ryegrass grown in pots. Fertilizer Res. 33. 135144.

  • Saif, S. R. , 1986. Vesicular-arbuscular mycorrhizae in tropical forage species as influenced by season, soil texture, fertilizers, host species and ecotypes. Angew. Botanik. 60. 125139.

    • Search Google Scholar
    • Export Citation
  • Sanders, F. E. & Tinker, P. B., 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature. 233. 278279.

  • Sarkadi J. , 1960. Kísérletek különféle foszfátmutrágyákkal. Növénytermelés. 9. 159167.

  • Sarkadi, J., Thamm, B. & Pusztai, A., 1984. Possibility of the application of AL-P-values corrected by some soil characteristics for the estimation of the P-availability in soils. In: CIEC 9th World Fertilizer Congress. Proc. Vol. 2. 319323. Goeltze Druck. Göttingen.

    • Search Google Scholar
    • Export Citation
  • Sidlauskas, G., Masauskas, S. & Ezerinskas, V., 2002. Liming effect on P availabilty from Maardu phosphate rock. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 440450. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Sieverding, E. , 1991. Manipulation of indigenous VAM fungi through agronomic practices. In: Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. (Ed.: SIEVERDING, E.) 117185. Eschborn.

    • Search Google Scholar
    • Export Citation
  • Sik, K. , 1964. Vergleichende Dauerversuche mit feingranulierten Rohphosphaten auf drei Bodentypen in Ungarn. Agrokémia és Talajtan. 13. Suppl. 139146.

    • Search Google Scholar
    • Export Citation
  • Sikora, F. J. & Giordano, P. M., 1995. Future directions for agricultural phosphorus research. Fertilizer Res. 41. 167178.

  • Sinclair, A. G. et al., 1993. Agronomy modelling and economics of reactive phosphate rocks as slow-release phosphate fertilizers for grasslands. Fertilizer Res. 36. 229238.

    • Search Google Scholar
    • Export Citation
  • Sissingh, H. A. , 1971. Analytical technique of the Pw method, used for the assessment of the phosphate status of arable soils in the Netherlands. Plant and Soil. 34. 483486.

    • Search Google Scholar
    • Export Citation
  • Sisworo, E. L. et al., 2002. Direct use of phosphate rock to improve crop production in Indonesia. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 275293. IAEA–TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Smani, M. S. , 1992. Elimination du cadmium de l’acide phosphorique. In: Proc. 4th Int. IMPHOS Conference: Phosphorus, Life and Environment. 483498. Ghent, Belgium.

    • Search Google Scholar
    • Export Citation
  • Smith, A. N., Posner, A. M. & Quirk, J. P., 1977. A model describing the kinetics of dissolution of hydroxyapatite. J. Colloid Interface Sci. 62. 475494.

    • Search Google Scholar
    • Export Citation
  • Smith, S. E. & Gianinazzi-Pearson, V., 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Biol. 39. 221244.

    • Search Google Scholar
    • Export Citation
  • Somasiri, L. L. W. & Edwards, A. C., 1992. An ion exchange resin method for nutrient extraction of agricultural advisory soil samples. Commun. Soil Sci. Plant Anal. 23. 645657.

    • Search Google Scholar
    • Export Citation
  • Tarafdar, J. C. & Marschner, H., 1994. Phosphatase activity in the rhizosphere and hyposphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil. Biol. Biochem. 26. 387395.

    • Search Google Scholar
    • Export Citation
  • Tatár L.-NÉ & Márton Á., 1982. Különbözõ foszfortrágyák hatása a talaj foszfortartalmára és a kukoricanövény foszforfrakcióira. III. Terméseredmények, foszforhatások. Agrokémia és Talajtan. 31. 2936.

    • Search Google Scholar
    • Export Citation
  • Thamm F-NÉ , 1980. Az AL-P értékek korrigálása néhány talajtulajdonság figyelembevételével. Agrokémia és Talajtan. 29. 473496.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. P. , 1996. Correction of dual phosphorus and zinc deficiencies of linseed (Linum usitatissimum L.) with cultures of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 28. 941951.

    • Search Google Scholar
    • Export Citation
  • Tinker, P. B., Jones, M. D. & Durall, D. M., 1992. A functional comparison of ecto- and endomycorrhizas. In: Mycorrhizas in Ecosystems (Eds.: READ, D. J. et al.) 303310. CAB International. Wallingford. UK.

    • Search Google Scholar
    • Export Citation
  • Van Der Paauw, F. , 1971. An effective water extraction method for the determination of plantavailable soil phosphorus. Plant and Soil. 34. 467481.

    • Search Google Scholar
    • Export Citation
  • Van Erp, P. J., Houba, V. J. G. & Van Beusichem, M. L., 1998. One hundredth molar calcium chloride extraction procedure. Part I: A review of soil chemical, analytical, and plant nutritional aspects. Commun. Soil Sci. Plant Anal. 29. 16031623.

    • Search Google Scholar
    • Export Citation
  • Vanlauwe, B. et al., 2000. Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize. Soil Biol. Biochem. 32. 20632077.

    • Search Google Scholar
    • Export Citation
  • Várallyay GY. et al., 1980. Magyarország termohelyi adottságait meghatározó talajtani tényezok 1: 100 000 méretarányú térképe. Agrokémia és Talajtan. 29. 3576.

    • Search Google Scholar
    • Export Citation
  • Várallyay, GY. et al., 1993. Map of the susceptibility of soils to acidification in Hungary. Agrokémia és Talajtan. 42. 3542.

  • Végh, K. R. & Füleky, Gy., 1994. Phosphate transport to roots in soils with different moisture content and texture. In: Proc. ESA 3rd Congress (Eds.: BORIN, B. & SATTIN, M.) 550551. Padova-Abano.

    • Search Google Scholar
    • Export Citation
  • Végh, K. R., Füleky, G. & Varró, T., 1990. Phosphorus diffusion to barley roots as influenced by moisture and phosphorus content of soils. In: Plant Nutrition –Physiology and Applications. (Ed.: VAN BEUSICHEM, M. L.) 147151. Kluwer. Wageningen.

    • Search Google Scholar
    • Export Citation
  • Watkinson, J. H. , 1994a. A test for phosphate rock reactivity in which solubility and size are combined in a dissolution rate function. Fert. Res. 39. 205215.

  • Watkinson, J. H. , 1994b. Modelling the dissolution rate of reactive phosphate rock in New Zealand pastoral soils. Aust. J. Soil Res. 32. 739753.

  • Watkinson, J. H. , 1994c. Dissolution rate of phosphate rock particles having a wide range of sizes. Aust. J. Soil Res. 32. 10091014.

  • Wilson, M. A. & Ellis, B. G., 1984. Influence of calcium solution activity and surface area on the solubility of selected rock phosphates. Soil Sci. 138. 354359.

    • Search Google Scholar
    • Export Citation
  • Wright, R. J., Baligar, V. C. & Belesky, D. P., 1992. Dissolution of North Carolina phosphate rock in soils of the Appalachian region. Soil Sci. 153. 2536.

    • Search Google Scholar
    • Export Citation
  • Xiong, L. M., Zhou, Z. G. & Lu, R. K., 1996. Enhanced plant growth by uniform placement of superphosphate with rock phosphate in acidic soils. Commun. Soil Sci. Plant Anal. 27. 28372850.

    • Search Google Scholar
    • Export Citation
  • Yang, X. et al., 1994. Effects of organic manure on solubility and mobility of different phosphate fertilizers in two paddy soils. Fert. Res. 38. 233238.

    • Search Google Scholar
    • Export Citation
  • Zaharah, A. R. & Bah, A. R., 1997. Effect of green manures on P solubilization and uptake from phosphate rocks. Nutrient Cycling in Agroecosystems. 48. 247255.

    • Search Google Scholar
    • Export Citation
  • Zaharah, A R & Sharifuddin, H. A. H., 2002. Phosphorus availability in acid tropical soil amended with phosphate rocks. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production. 294303. IAEA-TEDOC-1272.

    • Search Google Scholar
    • Export Citation
  • Zapata, F. & Axmann, H., 1995. 32P isotopic techniques for evaluating the agronomic effectiveness of rock phosphate materials. Fertilizer Res. 41. 189195.

    • Search Google Scholar
    • Export Citation
  • Zoysa, A. K. N., Loganathan, P. & Hedley, M. J., 1998. Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis L.) compared with other species. Eur. J. Soil Sci. 49. 477486.

    • Search Google Scholar
    • Export Citation
  • Zoysa, A. K. N., Loganathan, P. & Hedley, M. J., 1999. Phosphorus utilisation efficiency and depletion of phosphate fractions in the rhizosphere of three tea (Camellia sinensis L.) clones. Nutr. Cycl. Agroecosyst. 53. 189201.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 17 0 0
May 2022 12 0 0
Jun 2022 3 1 1
Jul 2022 3 0 0
Aug 2022 11 0 0
Sep 2022 10 0 0
Oct 2022 0 0 0