Authors:
Anikó Seres Szent István Egyetem, Gödöllő

Search for other papers by Anikó Seres in
Current site
Google Scholar
PubMed
Close
and
Gábor Bakonyi Szent István Egyetem, Gödöllő

Search for other papers by Gábor Bakonyi in
Current site
Google Scholar
PubMed
Close
Restricted access

A dolgozatban áttekintjük a talajban élő állatok és az arbuszkuláris mikorrhizagombák (AM-gomba) közötti sokféle kapcsolatrendszert. Várható, hogy a klímaváltozások következtében növekszik a száraz időszakok gyakorisága. Ilyen körülmények között a mikorrhiza-gombák jelentősége a növények tápanyag- és vízfelvételében a jelenlegi állapothoz képest növekedni fog.

Célunk, hogy bemutassuk az állatok hatását az AM-gombákra és ezen keresztül a növényi tápanyagfelvételre, valamint a növények növekedésére.

A különböző talajlakó állatfajok hatása az AM-gombákra egyidejűleg lehet pozitív és negatív is, ezért a hatások eredőjeként tapasztalt jelenségek magyarázata sokszor igen bonyolult.

  • Abbott, L. K. & Robson, A. D., 1977. The distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Australian Journal of Botany. 25. 515522.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. M. & Healey, I. N., 1972. Seasonal and interspecific variation in major components of the gut contents of some woodlands Collembola. Journal of Animal Ecology. 41. 359368.

    • Search Google Scholar
    • Export Citation
  • Bakhtair, Y. et al., 2001. Interactions between two arbuscular mycorrhizal fungi and fungivorous nematodes and control of the nematode with fenamifos. Applied Soil Ecology. 17. 107117.

    • Search Google Scholar
    • Export Citation
  • Bakonyi, G. , 1989. Effects of Folsomia candida (Collembola) on the microbial biomass in a grassland soil. Biology and Fertility of Soils. 7. 138141.

    • Search Google Scholar
    • Export Citation
  • Bakonyi, G. , 1998. Nitrogen turnover of Sinella coeca (Collembola: Entomobryidae). European Journal of Entomology. 95. 321326.

  • Bakonyi, G., Dobolyi, C. & Le, B. T., 1994. 15N uptake by collembolans from bacterial and fungal food source. Acta Zoologica Fennica. 194. 136138.

    • Search Google Scholar
    • Export Citation
  • Bakonyi, G. et al., 2002. Density-dependent regulation of arbuscular mycorrhiza by collembola. Soil Biology and Biochemistry. 34. 661664.

    • Search Google Scholar
    • Export Citation
  • Bethlenfalvay, G. J. et al., 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant. 72. 565571.

    • Search Google Scholar
    • Export Citation
  • Biro, B. et al., 2000. Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl. Soil Ecol. 15. 159168.

    • Search Google Scholar
    • Export Citation
  • Cooper, K. M. & Grandison, G. S., 1986. Interaction of vesicular–arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Ann. App. Biol. 108. 555565.

    • Search Google Scholar
    • Export Citation
  • Dowding, E. S. , 1959. The ecology of Endogone. Trans. Br. Mycol. Soc. 42. 449457.

  • Finlay, R. D. , 1985. Interactions between soil micro-arthropods and endomycorrhizal associations of higher plants. In: Ecological Interactions in Soil (Eds.: FITTER, A. H. et al.) 319331. Blackwell Scientific Publications. Oxford.

    • Search Google Scholar
    • Export Citation
  • Fitter, A. H. & Garbaye, J., 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil. 159. 123132.

  • Gange, A. C. , 1993. Translocation of mycorrhizal fungi by earthworms during early plant succession. Soil Biology and Biochemistry. 25. 10211026.

    • Search Google Scholar
    • Export Citation
  • Gange, A. C. , 2000. Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends in Ecology & Evolution. 15. (9) 369372.

  • Gange, A. C. , 2001. Species-species responses of a root- and shoot feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytologist. 150. (3) 611618.

    • Search Google Scholar
    • Export Citation
  • Gange, A. C. & Ayres, R. L., 1999. On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos. 87. 615621.

    • Search Google Scholar
    • Export Citation
  • Gange, A. C. & Bower, E., 1997. Interactions between insects and mycorrhizal fungi. In: Multitrophic Interactions in Terrestrial Systems. (EDS.: GANGE, A. C. & BROWN, V. K.) 115132. Blackwell Science. Oxford.

    • Search Google Scholar
    • Export Citation
  • Gange, A. C. & West, H. M., 1994. Interaction between arbuscular mycorrhizal fungi and foliar feeding insects in Plantago lanceolata L. New Phytologist. 128. 7987.

    • Search Google Scholar
    • Export Citation
  • Gange, A. C., Brown, V. K. & Sinclair, G. S., 1994. Reduction of black vine weevil growth by vesicular–arbuscular mycorrhizal infection. Entomologia Experimentalis et Applicata. 70. 115119.

    • Search Google Scholar
    • Export Citation
  • Gilmore, S. K. & Potter, D. A., 1993. Potential role of Collembola as biotic mortality agents for entomopathogenic nematodes. Pedobiologia. 37. 3038.

    • Search Google Scholar
    • Export Citation
  • Goverde, M. et al., 2000. Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Ocologia. 125. (3) 362369.

    • Search Google Scholar
    • Export Citation
  • Grandison, G. S. & Cooper, K. M., 1986. Interaction of vesicular–arbuscular mycorrhizae and cultivars of alfalfa susceptible and resistant to Meloidogyne hapla. J. Nematology. 18. 141154.

    • Search Google Scholar
    • Export Citation
  • Griffiths, B. S. & Bardgett, R. D., 1997. Interactions between microbe-feeding invertebrates and soil microorganisms. In: Modern Soil Microbiology. (Eds.: ELSAS, J. D., TREVORS, J. T. & WELLINGTON, E. M. H.) 165181. Marcel Dekker Inc. New York

    • Search Google Scholar
    • Export Citation
  • Harris, J. L. & Boerner, R. E. J., 1990. Effects of belowground grazing by collembola on growth, mycorrhizal infection, and P uptake of Geranium robertianum. Plant and Soil. 129. 203210.

    • Search Google Scholar
    • Export Citation
  • Hodge, A. 2000. Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiology Ecology. 32. 9196.

  • Hussey, R. S. & Roncadori, R. W., 1980. Influence of Aphelenchus avenae on vesicular–arbuscular endomycorrhizal growth response in cotton. J. Nematology. 13. 4852.

    • Search Google Scholar
    • Export Citation
  • Ingham, R. E. , 1988. Interactions between nematodes and vesicular–arbuscular mycorrhizae. Agriculture, Ecosystems and Environment. 24. 169182.

    • Search Google Scholar
    • Export Citation
  • Jakucs E. , 1996. Az ektomikorrhizák morfológiai vizsgálatának módszerei. Mikológiai Közlemények. 35. 930.

  • Jakucs, E. , 1999a. Fungal symbioses. Acta Microbiologica et Immunologica Hungarica. 46. 193195.

  • Jakucs E. , 1999b. A mikológia alapjai. ELTE, Eötvös Kiadó. Budapest.

  • Jakucs, E. 2002. Ectomycorrhizae of Populus alba L. in South Hungary. Phyton. (Megjelenés alatt).

  • Kaiser, P. A. & Lussenhop, J., 1991. Collembolan effects on establishment of vesiculararbuscular mycorrhizae in soybean (Glycine max). Soil Biology and Biochemistry. 23. 307308.

    • Search Google Scholar
    • Export Citation
  • Klironomos, J. N. & Kendrick, W. B., 1995. Stimulative effects of arthropods on endomycorrhizas of sugar maple in the presence of decaying litter. Funct. Ecol. 9. 528536.

    • Search Google Scholar
    • Export Citation
  • Klironomos, J. N. & Kendrick, W. B., 1996. Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biology and Fertility of Soils. 21. 4352.

    • Search Google Scholar
    • Export Citation
  • Klironomos, J. N. & Moutoglis, P., 1999. Colonization of nonmycorrhizal plants by mycorrhizal neighbours as influenced by the collembolan, Folsomia candida. Biology and Fertility of Soils. 29. 277281.

    • Search Google Scholar
    • Export Citation
  • Klironomos, J. N. & Ursic, M., 1998. Density dependent grazing on the extraradical hifal network of the arbuscular fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biology and Fertility of Soils. 26. 250253.

    • Search Google Scholar
    • Export Citation
  • Larsen, J. & Jakobsen, I., 1996. Effects of a mycophagous Collembola on the symbioses between Trifolium subterraneum and three arbuscular mycorrhizal fungi. New Phytologist. 133. 295302.

    • Search Google Scholar
    • Export Citation
  • Lussenhop, J. , 1992. Mechanisms of microarthropod-microbial interactions in soil. Advances in Ecological Research. 23. 133.

  • Lussenhop, J. , 1996. Collembola as mediators of microbial symbiont effects upon soybean. Soil Biology and Biochemistry. 28. 363369.

    • Search Google Scholar
    • Export Citation
  • Malloch, D. W., Pirozynski, K. A. & Raven, P. H., 1980. Ecological and evolutionary significance of mycorrhizal symbiosis in vascular plants (A review). Proceedings of the National Academy of Science, USA. 77. 21132118.

    • Search Google Scholar
    • Export Citation
  • Marschner, A. & Dell, B., 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil. 159. 89102.

  • Mcgonigle, T. P. , 1995. The significance of grazing on fungi in nutrient cycling. Canadian Journal of Botany. 73. (Suppl. 1.) 13701376.

    • Search Google Scholar
    • Export Citation
  • Moore, J. C., Ingham, E. R. & Coleman, D. C., 1987. Inter- and intraspecific feeding selectivity of Folsomia candida on fungi. Biology and Fertility of Soils. 5. 612.

    • Search Google Scholar
    • Export Citation
  • Moore, J. C., ST John, T. V. & Coleman, D. C., 1985. Ingestion of vesicular–arbuscular mycorrhizal hyphae and spores by soil microarthropods. Ecology. 66. 19791981.

    • Search Google Scholar
    • Export Citation
  • Pattison, G. S., Smith, S. E. & Doube, B. M., 1997. Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular–arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol. Biochem. 29. 10791088.

    • Search Google Scholar
    • Export Citation
  • Pinochet, J., Camprubi, A. & Calvet, C., 1993. Effects of the root-lesion nematode Pratylenchus vulnus and the mycorrhizal fungus Glomus mosseae on the growth of EMLA-26 apple rootstock. Mycorrhiza. 4. 7983.

    • Search Google Scholar
    • Export Citation
  • Posta K. , 1997. Az endomikorrhiza szerepe a környezeti stresszhatások kivédésében. Agrokémia és Talajtan. 46. 359369.

  • Posta, K. & FÜLEKY, GY., 1997a. Growth and phosphorus nutrition of mycorrhizal maize plants at different soil volumes and phosphorus supplies. Acta Agronomica Hungarica. 45. 135145.

  • Posta, K. & FÜLEKY, GY., 1997b. Foszfortrágyázás hatása a kukorica (Zea mays.L.cv.Pioneer) mikorrhizáltságára Glomus mosseae (Nicol.Gerd.) fertozéskor. Növénytermelés. 46. 573582.

  • Posta, K. & FÜLEKY, GY., 2000. Phosphate activity in the rhizosphere and hyphosphere of maize induced by different phosphorus sources. Bulletin of the Szent István University. 5567.

    • Search Google Scholar
    • Export Citation
  • Posta, K., Marschner, H. & Römheld, V., 1994. Mangasen reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza. 5. 119124.

    • Search Google Scholar
    • Export Citation
  • Rabatin, S. C. , 1980. Factors influencing the distribution and activity of vesicular–arbuscular mycorrhizal fungi in mesic herbaceosus plant communites. PhD Thesis. University of Pittsburgh, PA.

    • Search Google Scholar
    • Export Citation
  • Rabatin, S. C. & Stinner, B. R., 1988. Indirect effects of interactions between VAM fungi and soil-inhabiting invertebrates on plant processes. Agriculture, Ecosystem and Environment. 24. 135146.

    • Search Google Scholar
    • Export Citation
  • Rabatin, S. C. & Stinner, B. R., 1991. Vesicular–arbuscular mycorrhizae, plant and invertebrate interactions in soil. In: Microbial Mediation of Plant-Herbivore Interactions (Ed.: BARBOSA, P, KRISCHIK, V.A. & JONES, C. G.) 141168. John Wiley & Sons. Chichester.

    • Search Google Scholar
    • Export Citation
  • Salawu, E. O. & Estey, R. H., 1979. Observations on the relationships between a vesicular–arbuscular fungus, a fungivorus nematode, and the growth of soybeans. Phytoprotection. 60. 99102.

    • Search Google Scholar
    • Export Citation
  • Saleh, H. & Sikora, R. A. 1984. Relationship between Glomus fasciculatum root colonization of cotton and its effect on Meloidogyne incognita. Nematologica. 30. 230237.

    • Search Google Scholar
    • Export Citation
  • Sárváry M. , Bakonyi G. & Claassen, V. P., 2000. A Hemileius initialis (Acari: Oribatida) táplálékválasztása szaprofita és endomikorrhiza gombafajok jelenlétében. Állattani Közlemények. 85. 5358.

    • Search Google Scholar
    • Export Citation
  • Scheu, S., Theenhaus, A. & Jones, T. H., 1999. Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia. 119. 541551.

    • Search Google Scholar
    • Export Citation
  • Seres A. , Bakonyi G. & Posta K., 2002. Ugróvillások (Collembola) szerepe a Glomus mosseae (Zygomycetes) terjesztésében. Állattani Közlemények. (Megjelenés alatt)

    • Search Google Scholar
    • Export Citation
  • Sitaramaiah, K & Sikora, R. A., 1982. Effect of the mycorrhizal fungus Glomus fasciculatus on the host-parasite relationship of Rotylenchus reniformis in tomato. Nematologica. 28. 412419.

    • Search Google Scholar
    • Export Citation
  • Smith, G. S. & Kaplan, D. T., 1988. Influence of mycorrhizal fungus, phosphorous, and burrowing nematode interactions on growth of roughlemon citrus seedlings. J. Nematol. 20. 539544.

    • Search Google Scholar
    • Export Citation
  • Stanners, D , & Bourdeau, P. (Eds.) 1995. Europe’s Environment. The Dobris Assessment. European Environment Agency, Copenhagen.

  • Thimm, T. & Larink, O. 1995. Grazing preferences of some collembola for endomycorrhizal fungi. Biology & Fertility of Soils. 19. 226268.

    • Search Google Scholar
    • Export Citation
  • Trappe, J. M. & Maser, C., 1976. Germination of spores of Glomus macrocarpus (Endogonaceae) after passage through a rodent digestive tract. Mycologia. 68. 433435.

    • Search Google Scholar
    • Export Citation
  • Wallwork, J. A. , 1970. Ecology of Soil Animals. McGraw–Hill, New York

  • Tuffen, F., Eason, W. R. & Scullion, J., 2002. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porum plants. Soil Biol. Biochem. (In press).

  • Warnock, A. J., Fitter, A. H. & Usher, M. B., 1982. The influence of a springtail Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek (Allium porrum) and the vesicular-arbuscular mycorrhizal endophyte Glomus fasciculatus. New Phytologist. 90. 285292.

    • Search Google Scholar
    • Export Citation
  • Watson, R. T., Zinyowera, M. C. & Moss, R. H., 1998. The Regional Impacts of Climate Change: An Assessment Vulnerability. A Special Report by IPCC Working Group II. Cambridge University Press. Port Chester, New York.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. O. , 1962. Endogone, Hymenogaster, and Melanogaster as small mammal foods. Am. Midl. Nat. 67. 152156.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 14 0 0
Sep 2024 90 0 0
Oct 2024 160 0 0
Nov 2024 272 0 0
Dec 2024 332 0 0
Jan 2025 120 0 0
Feb 2025 56 0 0