Tanulmányunkban az indikációs módszerek három csoportját tekintettük át: 1. az életközösségek szerkezeti leírása, 2. a korrelációs elemzésekre épülo indikációs módszerek, 3. a muködési, hatás-alapú indikációs módszerek. A korrelációs indikációs módszerek elterjedtek az ökológiai indikációban, azonban e módszercsalád korlátozottan alkalmazható az ökológiai hatás-tanulmányokban: egyrészt mivel nem arányskálán adja meg az érzékenységet, másrészt, mivel idoben nem alkalmas elore jelezni a várható ökológiai következményeket. A hatás-alapú módszer módszertanában és felhasználhatóságában is lényegesen eltér az elozoekétol. A hatás-alapú indikációban részletes közvetlen ökológiai kapcsolatok rendszerébol idoben elore jósló modell épül fel, amely egy olyan eszköz a környezeti tervezés számára, mellyel szcenárió- és kockázati elemzéseket is el lehet végezni. Az EEA, illetve más európai léptéku monitoring fejlesztését végzo szervezetek és programok (pl. OECD, 2003) az indikációs eljárást, illetve a talajállapot jellemzésének módszertanát a DPSIR rendszer alapján határozták meg. Ez a Driving forces, Pressures, State, Impact, Responses, azaz a ható tényezok, a terhelések, az állapot, a hatás meghatározása és az adott válaszok együttes kezelését, a modellek szintjén történo integrálását és az intézkedések meghatározását és szabályozását jelenti. Az EU/EEA és az OECD által koordinált munkákban a talaj mezofaunáján alapuló talajökológiai indikáció jelentos szerepet kap, mely vizsgálatokról a Rómában 2003-ban megrendezett OECD konferencia publikációjából ismerkedhetünk meg. E munkákban a korrelációs és a hatás-alapú indikációs eljárásokat részesítik elonyben. Az európai léptéku talajmonitoring rendszer felépítésének tervezésénél, továbbá a hazai talaj-monitoring rendszer fejlesztésénél és harmonizációjánál lényeges elem, hogy a mért paraméterek alkalmazhatóak legyenek adekvát elemzo rendszerekhez. A jövore nézve tehát mind a felhasználandó értékelo módszerek, mind az azt kiszolgáló adattermelo monitoring rendszerek tekintetében a nemzetközi viszonylatban kompatibilis módszerek fejlesztése lehet a cél.
EEA, 2001. Proposal for a European Soil Monitoring and Assessment Framework. Technical Report 61.
Winkler, H. & Kampichler, C., 2000. Local and regional species richness in communities of surface-dwelling grassland Collembola: indication of species saturation. Ecolography. 23. 385--392.
'Local and regional species richness in communities of surface-dwelling grassland Collembola: indication of species saturation. ' () 23 Ecolography. : 385 -392 .
Van Straalen, N. M., 1998. Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology. 9. 429--437.
'Evaluation of bioindicator systems derived from soil arthropod communities. ' () 9 Applied Soil Ecology. : 429 -437 .
Van Straalen, N. M. & Verhoef, H. A., 1997. The development of a bioindicator system for soil acidity based on arthropod pH preferences. Journal of Applied Ecology. 34. 217--232.
'The development of a bioindicator system for soil acidity based on arthropod pH preferences. ' () 34 Journal of Applied Ecology. : 217 -232 .
Warfringe, P. & Sverdrup, H., 1995. Critical Loads of Acidity to Swedish Forest Soils. Reports in Ecology and Environmental Engineering. Report 5. Lund.
Chertov, O. G. & Komarov, A. S., 1996. SOMM: a model of soil organic matter dynamics. Ecological Modelling. 94. 177--189.
'SOMM: a model of soil organic matter dynamics. ' () 94 Ecological Modelling. : 177 -189 .
Frampton, G. K., van den Brink, P. J. & Gould, P. J. L., 2000. Effects of spring precipitation on a temperate arable collembolan community analysed using principal response curves. Applied Soil Ecology. 14. 231--248.
'Effects of spring precipitation on a temperate arable collembolan community analysed using principal response curves. ' () 14 Applied Soil Ecology. : 231 -248 .
Hansson, J., 1995. Experimenting with Modelling of Biodiversity as a Function of Soil Acidity and Nitrogen. Reports in Ecology and Environmental Engineering. Report 3. Lund.
Holmstrup, M., Hedlund, K. & Boriss, H., 2002. Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology. 48. 961--970.
'Drought acclimation and lipid composition in ' () 48 Folsomia candida : 961 -970 .
Hopkin, S. P., 1997. Biology of Springtails (Insecta: Collembola). Oxford University Press. London.
Biology of Springtails (Insecta: Collembola) , ().
Horváth, A., 1998. INFOTHEM programs: new possibilities of spatial series analysis based on information theory methods. TISCIA. 31. 71--85.
'INFOTHEM programs: new possibilities of spatial series analysis based on information theory methods. ' () 31 TISCIA. : 71 -85 .
Kampichler, C., Dzeroski, S. & Wieland, R., 2000. Application of machine learning techniques to the analysis of soil ecological databases: relationships between habitat features and Collembolan community characteristics. Soil Biol. Biochem. 32. 197--209.
'Application of machine learning techniques to the analysis of soil ecological databases: relationships between habitat features and Collembolan community characteristics. ' () 32 Soil Biol. Biochem. : 197 -209 .
Keppens, J., 2002. Compositional Ecological Modelling via Dynamic Constraint Satisfaction with Order-of-Magnitude Preferences. PhD Thesis. Centre for Intelligent Systems and their Applications, Division of Informatics, University of Edinburgh.
Kimberling, D. N., Karr, J. R. & Fore, L. S., 2001. Measuring human disturbance using terrestrial invertebrates in the shrub--steppe of eastern Washington (USA). Ecological Indicators. 1. 63--81.
'Measuring human disturbance using terrestrial invertebrates in the shrub-steppe of eastern Washington (USA). ' () 1 Ecological Indicators. : 63 -81 .
Klironomos, J. N. & Kendrick, B., 1995. Relationships among microarthropods, fungi, and their environment. Plant and Soil. 170. 183--197.
'Relationships among microarthropods, fungi, and their environment. ' () 170 Plant and Soil. : 183 -197 .
Klironomos, J. N., Rilling, M. C. & Allen, M. F., 1999. Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology. 12. 227--238.
'Designing belowground field experiments with the help of semi-variance and power analyses. ' () 12 Applied Soil Ecology. : 227 -238 .
Lek-Ang, S., Deharveng, L. & Lek, S., 1999. Predictive models of collembolan diversity and abundance in a riparian habitat. Ecological Modelling. 120. 247--260.
'Predictive models of collembolan diversity and abundance in a riparian habitat. ' () 120 Ecological Modelling. : 247 -260 .
Loranger, G. et al., 2001. Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biol. Biochem. 33. 381--393.
'Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biol. ' () 33 Biochem. : 381 -393 .
Maraun, M. et al., 2003. Adding to „the enigma of soil animal diversity”: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. European Journal of Soil Biology. 39. 85--95.
'Adding to „the enigma of soil animal diversity”: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. ' () 39 European Journal of Soil Biology. : 85 -95 .
Moore, J. C. & De Ruiter, P. C., 1991. Temporal and spatial heterogenity of trophic interaction within below-ground foodwebs. Agr. Ecosys. and Environ. 34. 371--397.
'Temporal and spatial heterogenity of trophic interaction within below-ground foodwebs. ' () 34 Agr. Ecosys. and Environ. : 371 -397 .
Németh T., 1996. Talajaink szervesanyag-tartalma és nitrogénforgalma. MTA Talajtani és Agrokémiai Kutató Intézete. Budapest.
Talajaink szervesanyag-tartalma és nitrogénforgalma , ().
OECD, 2003. Expert meeting on agricultural soil erosion and soil biodiversity indicators. 25--28 March, 2003. http://www.oecd.org/agr/env/indicators.htm
Ponge, J. F. et al., 2003. Collembolan communities as bioindicators of land use intensification. Soil Biol. Biochem. 35. 813--826.
'Collembolan communities as bioindicators of land use intensification. ' () 35 Soil Biol. Biochem. : 813 -826 .
Posch, M. et al. (eds.) 2003. Modelling and Mapping of Critical Thresholds in Europe. Status Report 2003. Coordination Center for Effects. National Institute for Public Health and the Environment. RIVM Report No. 259101013/2003. Bilthoven, The Netherlands.
Rajkai K., 2001. Modellezés és modellhasználat a talajtani kutatásban. Agrokémia és Talajtan. 50. 469--508.
'Modellezés és modellhasználat a talajtani kutatásban. ' () 50 Agrokémia és Talajtan. : 469 -508 .
Bartha, S., Czárán, T. & Podani, J., 1998. Exploring plant community dynamics in abstract coenostate spaces. Abstracta Botanica. 22. 49--66.
'Exploring plant community dynamics in abstract coenostate spaces. ' () 22 Abstracta Botanica. : 49 -66 .
Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia. 83. 14--19.
'The maturity index: an ecological measure of environmental disturbance based on nematode species composition. ' () 83 Oecologia. : 14 -19 .
Borhidi A. & Botta-Dukát Z., 2001. Ökológia az ezredfordulón II. Esettanulmányok. Magyarország az ezredfordulón. Stratégiai kutatások a Magyar Tudományos Akadémián. MTA. Budapest.
Stratégiai kutatások a Magyar Tudományos Akadémián , ().
Brook, B. W. et al., 2000. Predictive accuracy of population viability analysis in conservation biology. Nature. 404. 385.
'Predictive accuracy of population viability analysis in conservation biology. ' () 404 Nature. : 385 .
Brown, J. A., 2002. Designing an efficient adaptive cluster sample. Environmental and Ecological Statistics. 10. 95--105.
'Designing an efficient adaptive cluster sample. ' () 10 Environmental and Ecological Statistics. : 95 -105 .
Choi, W. & Ryo, M., 2003. A matrix model for predicting seasonal fluctuations in field populations of Paronychiurus kimi (Collembola: Onychiruidae). Ecological Modelling. 162. 259--265.
'A matrix model for predicting seasonal fluctuations in field populations of Paronychiurus kimi (Collembola: Onychiruidae). ' () 162 Ecological Modelling. : 259 -265 .
Cortet, J. et al., 1999. The use of invertebrate soil fauna in monitoring pollutant effects. Eur. J. Soil. Biol. 35. (3) 115--134.
'The use of invertebrate soil fauna in monitoring pollutant effects. ' () 35 Eur. J. Soil. Biol. .
De Ruiter, P. C., Neutel, A. M. & Moore, J. C., 1994. Modelling food webs and nutrient cycling in agro-ecosystems. Trends Ecol. Evol. 9. 378--383.
'Modelling food webs and nutrient cycling in agro-ecosystems. ' () 9 Trends Ecol. Evol. : 378 -383 .
Dombos M., 2000. Biotikus és abiotikus hatások szerepe az ugróvillás (Collembola) közösségek degradációjában. Doktori értekezés tézisei. Szegedi Tudományegyetem.
Dombos, M., 2001. Collembola of loess grassland: effects of grazing and landscape on community composition. Soil Biol. Biochem. 33. 2037--2045.
'Collembola of loess grassland: effects of grazing and landscape on community composition. ' () 33 Soil Biol. Biochem. : 2037 -2045 .
Dombos, M., 2003. Indication of soil acidification and drought on springtails by using dynamic modeling. In: Proc. 7th Central European Workshop on Soil Zoology, Ceske Budejovice, Czech Republic. 18.
Addison, J. A., Trofymow, J. A. & Marshall, V. G., 2003. Functional role of Collembola in successional coastal temperate forests on Vancouver Island, Canada. Applied Soil Ecology. 24. 247--261.
'Functional role of Collembola in successional coastal temperate forests on Vancouver Island, Canada. ' () 24 Applied Soil Ecology. : 247 -261 .
Anderson, J. M., 1975. The enigma of soil species diversity. In: Progress in Soil Zoology. 51--58. Proc. 5th Int. Coll. of Soil Zoology, Prague, 1973.
Bakonyi, G., Nagy, P. & Kádár, I., 2003. Long-term effects of heavy metals and microelements on nematode assemblage. Toxicology Letters. 140--141. 391--401.
'Long-term effects of heavy metals and microelements on nematode assemblage. ' () 140-141 Toxicology Letters. : 391 -401 .
Bardgett, R. D. & Cook, R., 1998. Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology. 10. 263--276.
'Functional aspects of soil animal diversity in agricultural grasslands. ' () 10 Applied Soil Ecology. : 263 -276 .
Ekschmitt, K. et al., 2003. On the quality of soil biodiversity indicators: abiotic and biotic parameters as predictors of soil faunal richness at different spatial scales. Agriculture, Ecosystems and Environment. 98. 273--283.
'On the quality of soil biodiversity indicators: abiotic and biotic parameters as predictors of soil faunal richness at different spatial scales. ' () 98 Agriculture, Ecosystems and Environment. : 273 -283 .
Ettema, C. H. & Wardle, D. A., 2002. Spatial soil ecology. Trends in Ecology & Evolution. 17. 177--179.
'Spatial soil ecology. ' () 17 Trends in Ecology & Evolution. : 177 -179 .
Filser, J., 2002. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia. 46. 234--245.
'The role of Collembola in carbon and nitrogen cycling in soil. ' () 46 Pedobiologia. : 234 -245 .
Filser, J. et al., 2002. Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change. Geoderma. 105. 201--221.
'Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change. ' () 105 Geoderma. : 201 -221 .
Salmon, S., Ponge, J. F. & Van Straalen, N. M., 2002. Ionic identity of pore water influences pH preferences in Collembola. Soil Biol. Biochem. 34. 1663--1667.
'Ionic identity of pore water influences pH preferences in Collembola. ' () 34 Soil Biol. Biochem. : 1663 -1667 .
Scheu, S., Theenhaus, A. & Jones, T. H., 1999. Links between the detrivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia. 119. 541--551.
'Links between the detrivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. ' () 119 Oecologia. : 541 -551 .
Schmera, D., 2003. Spatial distribution and coexistence patterns of caddisfly larvae (Trichoptera) in a Hungarian stream. Internat. Rev. Hydrobiol. 89. 51--57.
'Spatial distribution and coexistence patterns of caddisfly larvae (Trichoptera) in a Hungarian stream. ' () 89 Internat. Rev. Hydrobiol. : 51 -57 .
Siepel, H., 1994. Life-history tactics of soil microarthropods. Biology and Fertility of Soils. 18. 263--278.
'Life-history tactics of soil microarthropods. ' () 18 Biology and Fertility of Soils. : 263 -278 .
Siepel, H., 1995. Applications of microarthropod life-history tactics in nature management and ecotoxicology. Biology and Fertility of Soils. 19. 75--83.
'Applications of microarthropod life-history tactics in nature management and ecotoxicology. ' () 19 Biology and Fertility of Soils. : 75 -83 .
Slauson, W. L., Cade, B. S. & Richards, J. D., 1994. User Manual for BLOSSOM Statistical Software. Midcontinent Ecological Science Center, National Biological Survey. Fort Collins, Colorado.
User Manual for BLOSSOM Statistical Software , ().
Stein, A. & Ettema, Ch., 2003. An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons. Agriculture, Ecosystems and Environment. 94. 31--47.
'An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons. ' () 94 Agriculture, Ecosystems and Environment. : 31 -47 .
Sverdrup, H., 2000. Use of models in evaluation of emission reduction protocols. CCE Conference, Ljubjana.
Van Straalen, N. M., 1997. Community structure of soil arthropods as a bioindicator of soil health. In. Biological Indicators of Soil Health. (Eds:. Pankhurst, C. E., Daube, B. M. & Gupta, V. V. S. R.) 235--264. CAB International. Wallingford.
Biological Indicators of Soil Health , () 235 -264 .
Mazzoleni, S., Legg, C. & Muetzelfeldt, R., 1996. ModMED: Modelling Mediterranean Ecosystem Dynamics. 39th Symp. Int. Assoc. For Vegetation Science, Texas, June, 1995. 57.
Juhász-Nagy P., 1972. Elemi preferenciális folyamatok információelméleti modellezése szünbotanikai objektumokon. Kandidátusi értekezés. Budapest.
Elemi preferenciális folyamatok információelméleti modellezése szünbotanikai objektumokon , ().
Akçakaya, H. R., 1996. Linking metapopulation models with GIS for population viability analysis. In: Using Population Viability Analysis in Ecosystem Management at Fundy National Park. (Ed.: Flemming, S.) 45--54. Parks Canada — Ecosystem Science Review Report No. 1 Halifax, N. S.
Dombos, M., Farkas, Cs. & Flachner, Zs., 2003a. Dynamic modeling of soil acidification status in some Hungarian forest sites by using the SAFE model. In: Proc. 13th CCE Workshop, 19--21 May 2003, Tartu, Estonia.
Chertov, O. G. et al., 2001. ROMUL: a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. Ecological Modelling. 138. 289--308.
'ROMUL: a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. ' () 138 Ecological Modelling. : 289 -308 .
Dombos, M. et al., 2003b. VSD modeling of critical loads of forests on the Hungarian territory. In: Proc. 2nd CCE Training Session on Dynamic Modelling, 13--15 October, Prague.