Author:
Tibor Szili-KovácsMTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest, Herman Ottó út 15.

Search for other papers by Tibor Szili-Kovács in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access
  • Ross, D. J. et al., 1995. Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow release P and S fertilizer. Soil Biol. Biochem. 27. 1431--1443.

    'Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow release P and S fertilizer. ' () 27 Soil Biol. Biochem. : 1431 -1443 .

    • Search Google Scholar
  • Anderson, J. P. E. & Domsch, K. H., 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10. 215--221.

    'A physiological method for the quantitative measurement of microbial biomass in soils. ' () 10 Soil Biol. Biochem. : 215 -221 .

    • Search Google Scholar
  • Anderson, T-H. & Joergensen, R. G., 1997. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol. Biochem. 29. 1033--1042.

    'Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. ' () 29 Soil Biol. Biochem. : 1033 -1042 .

    • Search Google Scholar
  • Arnebrant, K. & Bååth, E., 1991. Measurements of ATP in forest humus. Soil Biol. Biochem. 23. 501--506.

    'Measurements of ATP in forest humus. ' () 23 Soil Biol. Biochem. : 501 -506 .

  • Bardgett, R. D., Hobbs, P. J. & Frostegard, A., 1996. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils. 22. 261--264.

    'Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. ' () 22 Biol. Fertil. Soils. : 261 -264 .

    • Search Google Scholar
  • Beare, M. H. et al., 1990. A substrate-induced respiration method (SIR) for measurement of fungal and bacterial biomass on plant residues. Soil Biol. Biochem. 22. 585--594.

    'A substrate-induced respiration method (SIR) for measurement of fungal and bacterial biomass on plant residues. ' () 22 Soil Biol. Biochem. : 585 -594 .

    • Search Google Scholar
  • Bewley, R. J. F. & Parkinson, D., 1984. Bacterial and fungal activity in sulphur dioxide polluted soils. Can. J. Microbiol. 31. 13--15.

    'Bacterial and fungal activity in sulphur dioxide polluted soils. ' () 31 Can. J. Microbiol. : 13 -15 .

    • Search Google Scholar
  • Bailey, V. L., Smith, J. L. & Bolton, H. Jr., 2002a. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol. Biochem. 34. 997--1007.

    'Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration ' () 34 Soil Biol. Biochem. : 997 -1007 .

    • Search Google Scholar
  • Bailey, V. L., Smith, J. L. & Bolton, H. Jr. 2003. Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal:bacterial ratios in soil. Biol. Fertil. Soils 38. 154--160.

    'Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal:bacterial ratios in soil. ' () 38 Biol. Fertil. Soils : 154 -160 .

    • Search Google Scholar
  • Bailey, V. L. et al., 2002b. Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol. Biochem. 34. 1385--1389.

    () 34 Soil Biol. Biochem. : 1385 -1389 .

  • Bakonyi, G., 1989. Effects of Folsomia candida (Collembola) on the microbial biomass in a grassland soil. Biol. Fertil. Soils. 7. 138--141.

    'Effects of Folsomia candida (Collembola) on the microbial biomass in a grassland soil. ' () 7 Biol. Fertil. Soils. : 138 -141 .

    • Search Google Scholar
  • Bolan, N. S., Currie, L. D. & Baskaran, S., 1996. Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biol. Fertil. Soils. 21. 284--292.

    'Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. ' () 21 Biol. Fertil. Soils. : 284 -292 .

    • Search Google Scholar
  • Buchanan, M. & King, L. D., 1992. Seasonal fluctuations in soil microbial biomass carbon, phosphorus, and activity in no-till and reduced-chemical-input maize agroecosystems. Biol. Fertil. Soils. 13. 211--217.

    'Seasonal fluctuations in soil microbial biomass carbon, phosphorus, and activity in no-till and reduced-chemical-input maize agroecosystems. ' () 13 Biol. Fertil. Soils. : 211 -217 .

    • Search Google Scholar
  • Chang, S. X. & Trofymov, J. A., 1996. Microbial respiration and biomass (substrate-induced respiration) in soils of old-growth and regenerating forests on northern Vancouver Island, British Columbia. Biol. Fertil. Soils. 23. 145--152.

    'Microbial respiration and biomass (substrate-induced respiration) in soils of old-growth and regenerating forests on northern Vancouver Island, British Columbia. ' () 23 Biol. Fertil. Soils. : 145 -152 .

    • Search Google Scholar
  • Cheng, W. & Coleman, D. C., 1989. A simple method for measuring CO2 in a continuous airflow system: modifications to the substrate-induced respiration technique. Soil Biol. Biochem. 21. 385--388.

    'A simple method for measuring CO2 in a continuous airflow system: modifications to the substrate-induced respiration technique. ' () 21 Soil Biol. Biochem. : 385 -388 .

    • Search Google Scholar
  • Cheng, W. & Ross, V. A., 1993. Measurement of microbial biomass in arctic tundra soils using fumigation-extraction and substrate-induced respiration procedures. Soil Biol. Biochem. 25. 135--141.

    'Measurement of microbial biomass in arctic tundra soils using fumigation-extraction and substrate-induced respiration procedures. ' () 25 Soil Biol. Biochem. : 135 -141 .

    • Search Google Scholar
  • Clarholm, M. & Rosswall, T., 1980. Biomass and turnover of bacteria in a forest soil and peat. Soil Biol. Biochem. 12. 49--57.

    'Biomass and turnover of bacteria in a forest soil and peat. ' () 12 Soil Biol. Biochem. : 49 -57 .

    • Search Google Scholar
  • Clark, F. E. & Paul, E. A., 1970. The microflora of grassland. Adv. Agron. 22. 375--435.

    'The microflora of grassland. ' () 22 Adv. Agron. : 375 -435 .

  • Degens, B. P. & Harris, J. A., 1997. Development of physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 29. 1309--1320.

    'Development of physiological approach to measuring the catabolic diversity of soil microbial communities. ' () 29 Soil Biol. Biochem. : 1309 -1320 .

    • Search Google Scholar
  • Degens, B. P. et al., 2000. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 32. 189--196.

    'Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. ' () 32 Soil Biol. Biochem. : 189 -196 .

    • Search Google Scholar
  • Degens, B. P. et al., 2001. Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol. Biochem. 33. 1143--1153.

    'Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol. ' () 33 Biochem. : 1143 -1153 .

    • Search Google Scholar
  • Dilly, O. 2001. Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol. Biochem. 33. 117--127.

    'Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. ' () 33 Soil Biol. Biochem. : 117 -127 .

    • Search Google Scholar
  • Fægri, A., Torsvik, L. V. & Goksöyr, J., 1977. Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol. Biochem. 9. 105--112.

    'Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. ' () 9 Soil Biol. Biochem. : 105 -112 .

    • Search Google Scholar
  • Fliessbach, A., Martens, R. & Reber, H. H., 1994. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 26. 1201--1205.

    'Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. ' () 26 Soil Biol. Biochem. : 1201 -1205 .

    • Search Google Scholar
  • Franzluebbers, A. J., Zuberer, D. A. & Hons, F. M., 1995. Comparison of microbiological methods for evaluating quality and fertility of soil. Biol. Fertil. Soils. 19. 135--140.

    'Comparison of microbiological methods for evaluating quality and fertility of soil. ' () 19 Biol. Fertil. Soils. : 135 -140 .

    • Search Google Scholar
  • Franzluebbers, A. J. et al., 1996. Determination of microbial biomass and nitrogen mineralization following rewetting of dried soil. Soil Sci. Soc. Am. J. 60. 1133--1139.

    'Determination of microbial biomass and nitrogen mineralization following rewetting of dried soil. ' () 60 Soil Sci. Soc. Am. J. : 1133 -1139 .

    • Search Google Scholar
  • Garland, J. L. & Mills, A. L., 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon source utilization. Appl. Environ. Microbiol. 57. 2351--2359.

    'Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon source utilization. ' () 57 Appl. Environ. Microbiol. : 2351 -2359 .

    • Search Google Scholar
  • Ghani, A. et al., 1996. Interactions between C-14-labelled atrazine and the soil microbial biomass in relation to herbicide degradation. Biol. Fertil. Soils. 21. 17--22.

    'Interactions between C-14-labelled atrazine and the soil microbial biomass in relation to herbicide degradation. ' () 21 Biol. Fertil. Soils. : 17 -22 .

    • Search Google Scholar
  • Graham, M. H. & Haynes, R. J., 2004. Organic matter status and the size, activity and metabolic diversity of the soil microflora as indicators of the success of rehabilitation of mined sand dunes. Biol. Fertil. Soils (in press).

  • Heilmann, B., Lebuhn, M. & Beese, F, 1995. Methods for the investigation of metabolic activities and shifts in the microbial communities in a soil treated with a fungicide. Biol. Fertil. Soils. 19. 186--192.

    'Methods for the investigation of metabolic activities and shifts in the microbial communities in a soil treated with a fungicide. ' () 19 Biol. Fertil. Soils. : 186 -192 .

    • Search Google Scholar
  • Heisler, C. & Kaiser, E. A., 1995. Influence of agricultural traffic and crop management on collembola and microbial biomass in arable soil. Biol. Fertil. Soils. 19. 159--165.

    'Influence of agricultural traffic and crop management on collembola and microbial biomass in arable soil. ' () 19 Biol. Fertil. Soils. : 159 -165 .

    • Search Google Scholar
  • Hintze, T., Gehlen, P. & Schröder, D., 1994. Are microbial biomass estimations equally valid with arable soils and forest soils? Soil Biol. Biochem. 26. 1207--1211.

    'Are microbial biomass estimations equally valid with arable soils and forest soils? Soil Biol. ' () 26 Biochem. : 1207 -1211 .

    • Search Google Scholar
  • Imberger, K. T. & Chiu, C. Y., 2001. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biol. Fertil. Soils. 33. 105--110.

    'Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. ' () 33 Biol. Fertil. Soils. : 105 -110 .

    • Search Google Scholar
  • Ineson, P. & Anderson, J. M., 1982. Microbial biomass determinations in deciduous forest litter. Soil Biol. Biochem. 14. 607--608.

    'Microbial biomass determinations in deciduous forest litter. ' () 14 Soil Biol. Biochem. : 607 -608 .

    • Search Google Scholar
  • Insam, H., Mitchell, C. C. & Dormaar, J. F., 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol. Biochem. 23. 459--464.

    'Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. ' () 23 Soil Biol. Biochem. : 459 -464 .

    • Search Google Scholar
  • Jenkinson, D. S. & Powlson, D. S., 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8. 209--213.

    'The effects of biocidal treatments on metabolism in soil. ' () 8 V. A method for measuring soil biomass. Soil Biol. Biochem. : 209 -213 .

    • Search Google Scholar
  • Kandeler, E. & Murer, E., 1993. Aggregate stability and soil microbial processes in a soil with different cultivation. Geoderma. 56. 503--513.

    'Aggregate stability and soil microbial processes in a soil with different cultivation. ' () 56 Geoderma. : 503 -513 .

    • Search Google Scholar
  • Insam, H., 1990. Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol. Biochem. 22. 525--532.

    'Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol. ' () 22 Biochem. : 525 -532 .

    • Search Google Scholar
  • Martens, R., 1987. Estimation of microbial biomass in soil by the respiration method: importance of soil pH and flushing methods for the measurement of respired CO2. Soil Biol. Biochem. 19. 77--81.

    'Estimation of microbial biomass in soil by the respiration method: importance of soil pH and flushing methods for the measurement of respired CO2. ' () 19 Soil Biol. Biochem. : 77 -81 .

    • Search Google Scholar
  • Kandeler, E., Tscherko, D. & Spiegel, H., 1999. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management. Biol. Fertil. Soils. 28. 343--351.

    'Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a chernozem under different tillage management. ' () 28 Biol. Fertil. Soils. : 343 -351 .

    • Search Google Scholar
  • Kandeler, E. et al., 1994. Effects of mesofaunal exclusion on microbial biomass and patterns on enzymatic activities in field mesocosms. In: Beyond the Biomass. (Eds.: Ritz, K. et al.) 181--189. Wiley and Sons. Chichester.

    Beyond the Biomass , () 181 -189 .

  • Kaiser, E. A. & Heinemeyer, O., 1993. Seasonal variations of soil microbial biomass carbon within the plough layer. Soil Biol. Biochem. 25. 1649--1655.

    'Seasonal variations of soil microbial biomass carbon within the plough layer. ' () 25 Soil Biol. Biochem. : 1649 -1655 .

    • Search Google Scholar
  • Kaiser, E. A. et al., 1992. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol. Biochem. 24. 675--683.

    'Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. ' () 24 Soil Biol. Biochem. : 675 -683 .

    • Search Google Scholar
  • Klein, D. A. & Paschke, M. W., 2000. A soil microbial community structural-functional index: the microscopy-based total/active/active fungal/bacterial (TA/AFB) biovolumes ratio. Appl. Soil Ecol. 14. 257--268.

    'A soil microbial community structural-functional index: the microscopy-based total/active/active fungal/bacterial (TA/AFB) biovolumes ratio. ' () 14 Appl. Soil Ecol. : 257 -268 .

    • Search Google Scholar
  • Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M., 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology. 83. 3152--3166.

    'Exotic plant species alter the microbial community structure and function in the soil. ' () 83 Ecology. : 3152 -3166 .

    • Search Google Scholar
  • Leita, L. et al., 1995. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fertil. Soils. 19. 103--108.

    'Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. ' () 19 Biol. Fertil. Soils. : 103 -108 .

    • Search Google Scholar
  • Lowell, R. D. & Jarvis, S. C., 1998. Soil microbial biomass and activity in soil from different grassland management treatments stored under controlled conditions. Soil Biol. Biochem. 30. 2077--2085.

    'Soil microbial biomass and activity in soil from different grassland management treatments stored under controlled conditions. ' () 30 Soil Biol. Biochem. : 2077 -2085 .

    • Search Google Scholar
  • Lin, Q. & Brookes, P. C., 1996. Comparison of methods to measure microbial biomass in unamended, ryegrass-amended and fumigated soils. Soil Biol. Biochem. 28. 933--939.

    'Comparison of methods to measure microbial biomass in unamended, ryegrass-amended and fumigated soils. ' () 28 Soil Biol. Biochem. : 933 -939 .

    • Search Google Scholar
  • Lin, Q. & Brookes, P. C., 1999a. An evaluation of the substrate-induced respiration method. Soil Biol. Biochem. 31. 1969--1983.

    'An evaluation of the substrate-induced respiration method. ' () 31 Soil Biol. Biochem. : 1969 -1983 .

    • Search Google Scholar
  • Lin, Q. & Brookes, P. C., 1999b. Arginine ammonification as a method to estimate soil microbial biomass and microbial community structure. Soil Biol. Biochem. 31. 1985--1997.

    'Arginine ammonification as a method to estimate soil microbial biomass and microbial community structure. ' () 31 Soil Biol. Biochem. : 1985 -1997 .

    • Search Google Scholar
  • MacFayden, A., 1973. Inhibitory effects of carbon dioxide on microbial activity in soil. Pedobiologia. 13. 140--149.

    'Inhibitory effects of carbon dioxide on microbial activity in soil. ' () 13 Pedobiologia. : 140 -149 .

    • Search Google Scholar
  • Maly, S., Hofman, J. & Dusek, L., 2002. Bioindicative value of eco-physiological indices in routine evaluation of soils — a pilot monitoring study in the Czech Republic. Bodenkultur. 53. 105--114.

    'Bioindicative value of eco-physiological indices in routine evaluation of soils - a pilot monitoring study in the Czech Republic. ' () 53 Bodenkultur. : 105 -114 .

    • Search Google Scholar
  • Maraun, M. & Scheu, S., 1996. Seasonal changes in microbial biomass and activity in leaf litter layers of beech (Fagus sylvatica) forests on a basalt--limestone gradient. Pedobiologia. 40. 21--31.

    'Seasonal changes in microbial biomass and activity in leaf litter layers of beech ( ' () 40 Fagus sylvatica : 21 -31 .

    • Search Google Scholar
  • Martens, R., 1985. Limitations in the application of the fumigation technique for biomass estimations in amended soils. Soil Biol. Biochem. 17. 57--63.

    'Limitations in the application of the fumigation technique for biomass estimations in amended soils. ' () 17 Soil Biol. Biochem. : 57 -63 .

    • Search Google Scholar
  • Nakas, J. P. & Klein, D. A., 1980. Mineralization capacity of bacteria and fungi from the rhizosphere and rhizoplane of a semiarid grassland. Appl. Environ. Microbiol. 59. 113--117.

    'Mineralization capacity of bacteria and fungi from the rhizosphere and rhizoplane of a semiarid grassland. ' () 59 Appl. Environ. Microbiol. : 113 -117 .

    • Search Google Scholar
  • Németh T., 1996. Talajaink szervesanyag-tartalma és nitrogénforgalma. MTA Talajtani és Agrokémiai Kutató Intézete. Budapest.

    Talajaink szervesanyag-tartalma és nitrogénforgalma , ().

  • Németh, T., Csathó, P. & Anton, A., 1997. Soil carbon dynamics in relation to cropping systems in principal ecoregions of Eastern Europe, with particular regard to Hungarian experiences. In: Management of Carbon Sequestration in Soil. (Eds.: Lal, R. et al.) 255--283. Advances in Soil Science. 18. CRC Press. New York.

    Management of Carbon Sequestration in Soil , () 255 -283 .

  • Ocio, J. A. & Brookes, P. C., 1990. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol. Biochem. 22. 685--694.

    'An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. ' () 22 Soil Biol. Biochem. : 685 -694 .

    • Search Google Scholar
  • Parkinson, D., Domsch, K. H. & Anderson, J. P. E., 1978. Die Entwicklung mikrobieller Biomassen im organischen Horizont eines Fichtenstandortes. Oecologia Plantarum. 13. 355--366.

    'Die Entwicklung mikrobieller Biomassen im organischen Horizont eines Fichtenstandortes. ' () 13 Oecologia Plantarum. : 355 -366 .

    • Search Google Scholar
  • Patra, D. D. et al., 1990. Seasonal changes of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years. Soil Biol. Biochem. 22. 739--742.

    'Seasonal changes of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years. ' () 22 Soil Biol. Biochem. : 739 -742 .

    • Search Google Scholar
  • Priha, O. & Smolander, A., 1994. Fumigation-extraction and substrate-induced respiration derived microbial biomass C, and respiration rate in limed soil of Scots pine sampling stands. Biol. Fertil. Soils. 17. 301--308.

    'Fumigation-extraction and substrate-induced respiration derived microbial biomass C, and respiration rate in limed soil of Scots pine sampling stands. ' () 17 Biol. Fertil. Soils. : 301 -308 .

    • Search Google Scholar
  • Rosacker, L. L. & Kieft, T. L., 1990. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biol. Biochem. 22. 1121--1127.

    'Biomass and adenylate energy charge of a grassland soil during drying. ' () 22 Soil Biol. Biochem. : 1121 -1127 .

    • Search Google Scholar
  • Ross, D. J., 1980. Evaluation of a physiological method for measuring microbial biomass in soils from grasslands and maize fields. New Zeal. J. Soil Sci. 23. 229--236.

    'Evaluation of a physiological method for measuring microbial biomass in soils from grasslands and maize fields. ' () 23 New Zeal. J. Soil Sci. : 229 -236 .

    • Search Google Scholar
  • Ross, D. J., 1990. Estimation of soil microbial C by a fumigation-extraction method: influence of seasons, soils and calibration with the fumigation--incubation procedure. Soil Biol. Biochem. 22. 295--300.

    'Estimation of soil microbial C by a fumigation-extraction method: influence of seasons, soils and calibration with the fumigation-incubation procedure. ' () 22 Soil Biol. Biochem. : 295 -300 .

    • Search Google Scholar
  • Ross, D. J., 1991. Microbial biomass in a stored soil: a comparison of different estimation procedures. Soil Biol. Biochem. 23. 1005--1007.

    'Microbial biomass in a stored soil: a comparison of different estimation procedures. ' () 23 Soil Biol. Biochem. : 1005 -1007 .

    • Search Google Scholar
  • Rosswall, T. & Paustian, K., 1984. Cycling of nitrogen in modern agricultural systems. Plant and Soil. 76. 3--21.

    'Cycling of nitrogen in modern agricultural systems. ' () 76 Plant and Soil. : 3 -21 .

    • Search Google Scholar
  • Scheu, S. & Parkinson, D., 1994. Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperature forest soils. Soil Biol. Biochem. 26. 1515--1525.

    'Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperature forest soils. ' () 26 Soil Biol. Biochem. : 1515 -1525 .

    • Search Google Scholar
  • Scheu, S. et al., 1996. Microbial biomass and respiratory activity in soil aggregates of different sizes from three beechwood sites on a basalt hill. Biol. Fertil. Soils. 21. 69--76.

    'Microbial biomass and respiratory activity in soil aggregates of different sizes from three beechwood sites on a basalt hill. ' () 21 Biol. Fertil. Soils. : 69 -76 .

    • Search Google Scholar
  • Šimek, M. & Šantrűčková, H., 1999. Vliv skladování pűdních vzorkű na mikrobiální biomasu a její aktivitu. Rostlinná Výroba. 45. 415--419.

    'Vliv skladování pűdních vzorkű na mikrobiální biomasu a její aktivitu. ' () 45 Rostlinná Výroba. : 415 -419 .

    • Search Google Scholar
  • Dilly, O. & Munch, J. C., 1996. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Soil. Biol. Biochem. 28. 1073--1081.

    'Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder ( ' () 28 Alnus glutinosa : 1073 -1081 .

    • Search Google Scholar
  • Domsch, K. H. et al., 1979. A comparison of methods for microbial population and biomass studies. Z. Pflanzenernaehr. Bodenkd. 142. 520--533.

    'A comparison of methods for microbial population and biomass studies. ' () 142 Z. Pflanzenernaehr. Bodenkd. : 520 -533 .

    • Search Google Scholar
  • Dumontet, S. & Mathur, S. P., 1989. Evaluation of respiration-based methods for measuring microbial biomass in metal-contaminated acidic mineral and organic soils. Soil Biol. Biochem. 21. 431--436.

    'Evaluation of respiration-based methods for measuring microbial biomass in metal-contaminated acidic mineral and organic soils. ' () 21 Soil Biol. Biochem. : 431 -436 .

    • Search Google Scholar
  • Smith, J. L., Halvorson, J. J. & Bolton, H., 1994. Spatial relationship of soil microbial biomass and C and N mineralization in a semi-arid shrub-steppe ecosystem. Soil Biol. Biochem. 26. 1151--1159.

    'Spatial relationship of soil microbial biomass and C and N mineralization in a semi-arid shrub-steppe ecosystem. ' () 26 Soil Biol. Biochem. : 1151 -1159 .

    • Search Google Scholar
  • Sparling, G. P., 1985. The soil biomass. In: Soil Organic Matter and Biological Activity. (Eds.: Vaugham, D. & Malcolm, R. E.) 223--262. Nijhoff. Dordrecht.

    The soil biomass. In: Soil Organic Matter and Biological Activity , () 223 -262 .

  • Sparling, G. P. & Searle, P. L., 1993. Dimethyl sulphoxide reduction as a sensitive indicator of microbial activity in soil: The relationship with microbial biomass and mineralization of nitrogen and sulphur. Soil Biol. Biochem. 25. 251--256.

    'Dimethyl sulphoxide reduction as a sensitive indicator of microbial activity in soil: The relationship with microbial biomass and mineralization of nitrogen and sulphur. ' () 25 Soil Biol. Biochem. : 251 -256 .

    • Search Google Scholar
  • Sparling, G. P. & West, A. W., 1990. A comparison of gas chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. Pedobiologia. 34. 103--112.

    'A comparison of gas chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. ' () 34 Pedobiologia. : 103 -112 .

    • Search Google Scholar
  • Sparling, G. P. & Zhu, C., 1993. Evaluation and calibration of biochemical methods to measure microbial biomass C and N in soils from Western Australia. Soil Biol. Biochem. 23. 1793--1801.

    'Evaluation and calibration of biochemical methods to measure microbial biomass C and N in soils from Western Australia. ' () 23 Soil Biol. Biochem. : 1793 -1801 .

    • Search Google Scholar
  • Sparling, G. P., Speir, T. W. & Whale, K. N., 1986. Changes in microbial biomass C, ATP content, soil phosphomonesterase and phosphodiesterase activity following air-drying soils. Soil Biol. Biochem. 18. 363--370.

    'Changes in microbial biomass C, ATP content, soil phosphomonesterase and phosphodiesterase activity following air-drying soils. ' () 18 Soil Biol. Biochem. : 363 -370 .

    • Search Google Scholar
  • Sparling, G. P. et al., 1990. Estimation of soil microbial C by a fumigation--extraction method: use on soils of high organic matter content, and a reassessment of the kEC-factor. Soil Biol. Biochem. 22. 301--307.

    'Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kEC-factor. ' () 22 Soil Biol. Biochem. : 301 -307 .

    • Search Google Scholar
  • Stamatiadis, S., Doran, J. W. & Ingham, E. R., 1990. Use of staining and inhibitors to separate fungal and bacterial activity in soil. Soil Biol. Biochem. 22. 81--88.

    'Use of staining and inhibitors to separate fungal and bacterial activity in soil. ' () 22 Soil Biol. Biochem. : 81 -88 .

    • Search Google Scholar
  • Stenberg, B. et al., 1998. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol. Biochem. 30. 393--402.

    'Microbial biomass and activities in soil as affected by frozen and cold storage. ' () 30 Soil Biol. Biochem. : 393 -402 .

    • Search Google Scholar
  • Stenström, J., Svensson, K. & Johansson, M., 2001. Reversible transition between active and dormant microbial states in soil. FEMS Microbiol. Ecol. 36. 93--104.

    'Reversible transition between active and dormant microbial states in soil. ' () 36 FEMS Microbiol. Ecol. : 93 -104 .

    • Search Google Scholar
  • Stockfisch, N. et al., 1995. Examination of microbial biomass in beech forest moder profiles. Biol. Fertil. Soils. 19. 209--214.

    'Examination of microbial biomass in beech forest moder profiles. ' () 19 Biol. Fertil. Soils. : 209 -214 .

    • Search Google Scholar
  • Szili-Kovács T. & Szegi J., 1992. Néhány magyarországi talaj mikrobiális biomassza-C tartalmának meghatározása kloroform fumigációs és szubsztrát indukált respirációs módszerrel. Agrokémia és Talajtan. 41. 227--240.

    'Néhány magyarországi talaj mikrobiális biomassza-C tartalmának meghatározása kloroform fumigációs és szubsztrát indukált respirációs módszerrel. ' () 41 Agrokémia és Talajtan. : 227 -240 .

    • Search Google Scholar
  • Taylor, B. R. & Parkinson, D., 1988. Does repeated wetting and drying accelerate decay of leaf litter? Soil Biol. Biochem. 20. 647--656.

    'Does repeated wetting and drying accelerate decay of leaf litter? Soil Biol. ' () 20 Biochem. : 647 -656 .

    • Search Google Scholar
  • Thirukkumaran, C. M. & Parkinson, D., 2000. Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biol. Biochem. 32. 59--66.

    'Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. ' () 32 Soil Biol. Biochem. : 59 -66 .

    • Search Google Scholar
  • Tscherko, D. & Kandeler, E., 1997. Ecotoxicological effects of fluorine on microbial biomass and enzyme activity in grassland. Eur. J. Soil Sci. 48. 329--335.

    'Ecotoxicological effects of fluorine on microbial biomass and enzyme activity in grassland. ' () 48 Eur. J. Soil Sci. : 329 -335 .

    • Search Google Scholar
  • Vance, E. D., Brookes, P. C. & Jenkinson, D. S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19. 703--707.

    'An extraction method for measuring soil microbial biomass C. ' () 19 Soil Biol. Biochem. : 703 -707 .

    • Search Google Scholar
  • van de Werf, H. & Verstrate, W., 1987. Estimation of active soil microbial biomass by mathematical analysis of respiration curves: Relation to conventional estimation of total biomass. Soil Biol. Biochem. 19. 267--271.

    'Estimation of active soil microbial biomass by mathematical analysis of respiration curves: Relation to conventional estimation of total biomass. ' () 19 Soil Biol. Biochem. : 267 -271 .

    • Search Google Scholar
  • Vedder, B. et al., 1996. Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil. Biol. Fertil Soils. 22. 22--30.

    'Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil. ' () 22 Biol. Fertil Soils. : 22 -30 .

    • Search Google Scholar
  • Velvis, H., 1997. Evaluation of the selective respiratory inhibition method for measuring the ratio of fungal:bacterial activity in acid agricultural soils. Biol. Fertil. Soils. 25. 354--360.

    'Evaluation of the selective respiratory inhibition method for measuring the ratio of fungal:bacterial activity in acid agricultural soils. ' () 25 Biol. Fertil. Soils. : 354 -360 .

    • Search Google Scholar
  • Visser, S. et al., 1984. Effect of topsoil storage on microbial activity primary production and decomposition potential. Plant and Soil. 82. 41--50.

    'Effect of topsoil storage on microbial activity primary production and decomposition potential. ' () 82 Plant and Soil. : 41 -50 .

    • Search Google Scholar
  • Wang, W. J. et al., 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 35. 273--284.

    'Relationships of soil respiration to microbial biomass, substrate availability and clay content. ' () 35 Soil Biol. Biochem. : 273 -284 .

    • Search Google Scholar
  • Wardle, D. A. & Ghani, A., 1995. Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable? Soil Biol. Biochem. 27. 821--828.

    'Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable? Soil Biol. ' () 27 Biochem. : 821 -828 .

    • Search Google Scholar
  • Wardle, D. A. & Parkinson, D., 1990a. Interactions between microclimatic variables and soil microbial biomass. Biol. Fertil Soils. 9. 273--280.

    'Interactions between microclimatic variables and soil microbial biomass. ' () 9 Biol. Fertil Soils. : 273 -280 .

    • Search Google Scholar
  • Wardle, D. A. & Parkinson, D., 1990b. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22. 825--834.

    'Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. ' () 22 Soil Biol. Biochem. : 825 -834 .

    • Search Google Scholar
  • Wardle, D. A. & Parkinson, D., 1990c. Comparison of physiological techniques for estimating the response of the soil microbial biomass to soil moisture. Soil Biol. Biochem. 22. 817--823.

    'Comparison of physiological techniques for estimating the response of the soil microbial biomass to soil moisture. ' () 22 Soil Biol. Biochem. : 817 -823 .

    • Search Google Scholar
  • Wardle, D. A. & Parkinson, D., 1991. A statistical evaluation of equations for predicting total microbial biomass carbon using physiological and biochemical methods. Agr. Ecosyst. Environ. 34. 75--86.

    'A statistical evaluation of equations for predicting total microbial biomass carbon using physiological and biochemical methods. ' () 34 Agr. Ecosyst. Environ. : 75 -86 .

    • Search Google Scholar
  • Webster, E. A. et al., 2001. The relationship between microbial carbon and the resource quality of soil carbon. J. Environ. Qual. 30. 147--150.

    'The relationship between microbial carbon and the resource quality of soil carbon. ' () 30 J. Environ. Qual. : 147 -150 .

    • Search Google Scholar
  • West, A. W. & Sparling, G. P., 1986. Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of different water contents. J. Microbiol. Meth. 5. 177--189.

    'Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of different water contents. ' () 5 J. Microbiol. Meth. : 177 -189 .

    • Search Google Scholar
  • West, A. W., Grant, W. D. & Sparling, G. P., 1987a. Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol. Biochem. 19. 607--612.

    'Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. ' () 19 Soil Biol. Biochem. : 607 -612 .

    • Search Google Scholar
  • West, A. W., Sparling, G. P. & Grant, W. D., 1986. Correlation between four methods to estimate total microbial biomass in stored, air-dried and glucose-amended soils. Soil Biol. Biochem. 18. 569--576.

    'Correlation between four methods to estimate total microbial biomass in stored, air-dried and glucose-amended soils. ' () 18 Soil Biol. Biochem. : 569 -576 .

    • Search Google Scholar
  • Alphei, J., Bonkowski, M. & Scheu, S., 1995. Application of the selective inhibition method to determine bacterial: fungal ratios in three beechwood soils rich in carbon — optimization of inhibitor concentrations. Biol. Fertil. Soils. 19. 173--176.

    'Application of the selective inhibition method to determine bacterial: fungal ratios in three beechwood soils rich in carbon - optimization of inhibitor concentrations. ' () 19 Biol. Fertil. Soils. : 173 -176 .

    • Search Google Scholar
  • Anderson, J. P. E. & Domsch, K. H., 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can. J. Microbiol. 21. 314--322.

    'Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. ' () 21 Can. J. Microbiol. : 314 -322 .

    • Search Google Scholar
  • West, A. W., Sparling, G. P. & Grant, W. D., 1987b. Relationship between mycelial and bacterial populations in stored, air-dried and glucose-amended arable and grassland soils. Soil Biol. Biochem. 19. 599--605.

    'Relationship between mycelial and bacterial populations in stored, air-dried and glucose-amended arable and grassland soils. ' () 19 Soil Biol. Biochem. : 599 -605 .

    • Search Google Scholar
  • Wheatley, R., Ritz, K. & Griffiths, B., 1990. Microbial biomass and mineral N transformations in soil planted with barley, ryegrass, pea or turnip. Plant and Soil. 127. 157--167.

    'Microbial biomass and mineral N transformations in soil planted with barley, ryegrass, pea or turnip. ' () 127 Plant and Soil. : 157 -167 .

    • Search Google Scholar
  • Williams, B. L. & Sparling, G. P., 1984. Extractable N and P in relation to microbial biomass in UK acid organic soils. Plant and Soil. 76. 139--148.

    'Extractable N and P in relation to microbial biomass in UK acid organic soils. ' () 76 Plant and Soil. : 139 -148 .

    • Search Google Scholar
  • Winter, K. & Beese, F., 1995. The spatial distribution of soil microbial biomass in a permanent row crop. Biol. Fertil. Soils. 19. 322--326.

    'The spatial distribution of soil microbial biomass in a permanent row crop. ' () 19 Biol. Fertil. Soils. : 322 -326 .

    • Search Google Scholar
  • Zak, J. C. et al., 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26. 1101--1108.

    'Functional diversity of microbial communities: a quantitative approach. ' () 26 Soil Biol. Biochem. : 1101 -1108 .

    • Search Google Scholar
  • Zhang, Q. & Zak, J. C., 1998. Potential physiological activities of fungi and bacteria in relation to plant litter decomposition along a gap size gradient in a natural subtropical forest. Microb. Ecol. 35. 172--179.

    'Potential physiological activities of fungi and bacteria in relation to plant litter decomposition along a gap size gradient in a natural subtropical forest. ' () 35 Microb. Ecol. : 172 -179 .

    • Search Google Scholar
  • Alef, K. et al., 1988. A comparision of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol. Biochem. 20. 561--565.

    'A comparision of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. ' () 20 Soil Biol. Biochem. : 561 -565 .

    • Search Google Scholar
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2022 7 0 0
Jan 2023 11 0 0
Feb 2023 0 0 0
Mar 2023 3 0 0
Apr 2023 1 0 0
May 2023 3 0 1
Jun 2023 0 0 0