Authors:
Zoltán Makó Sapientia - Erdélyi Magyar Tudományegyetem 530104 Csíkszereda, Szabadság tér 1. (Románia)

Search for other papers by Zoltán Makó in
Current site
Google Scholar
PubMed
Close
and
Szilárd Máté Sapientia - Erdélyi Magyar Tudományegyetem Csíkszereda, Románia

Search for other papers by Szilárd Máté in
Current site
Google Scholar
PubMed
Close
Restricted access

A közleményben bemutatott módszer egyik nagy előnye, hogy nagy általánossággal bír (más tájegységekre is alkalmazható) és egy bizonyos mértékben kiküszöböli a romániai táblázatos módszer szubjektivitásából adódó bizonytalanságokat. Pontosabban mondva, ha egy szakértőkből álló csoport meghatározza a példabemenetekhez tartozó talajértékeket, akkor a továbbiakban minden más tényezőhöz tartozó talajérték egyértelműen kiszámolható a súlyok segítségével megadott P-függvény (8) által. Az általunk megadott TP-típusú függvény (8. képlet) viszonylag sok (17) tényező alapján tudja csak megbecsülni egy adott pontban a talajértéket. Ha megfigyeljük a tanuló táblázatot (2. táblázat), észrevehető, hogy egy tájegységen belül bizonyos tényezők nem változnak. Ezeket ki lehet iktatni a gépi tanulás alkalmazásakor és így egyszerűsíthető a P-függvény. A hálózat által adott eredmények kiértékelése során (3. ábra) azt tapasztaltuk, hogy a Csíki-medence tájegységre a P-függvény (8) egy tizedes pontossággal meghatározza a talajértéket. A módszer által kapott TP-függvény csak a mintavételi pontok tartományán belül alkalmazható. Így pl. a Csíki-medencére meghatározott súlyok csak e tájegység talajértékeinek kiszámítására használhatók. Más tájegységre az ottani mintavételi adatok alapján a hiba-visszaterjesztési algoritmusával új súlymátrixokat kell szerkeszteni.  A módszer egy fontos eredménye, hogy a kapott súlyok egy tájegységet jellemeznek talajérték szempontjából. Érdekes következtetések vonhatók le, ha több különböző tájegységre meghatározzuk a súlyokat és megvizsgáljuk ezek között a korrelációkat. Ennek megvalósításához létrehozunk az ESRI Arcview térinformatikai programcsomaghoz egy kiegészítő modult (Arcview extension)  az Avenue script nyelv segítségével. Ez a modul egy tájegységre az ismert példabemenetek és talajértékek alapján megszerkeszt egy megfelelő számú neuronból álló hálózatot és meghatározza a súlyokat. A súlyok segítségével és a talajértéket befolyásoló tényezők ismeretében a tájegység bármely pontjában a talajérték kiszámítható és összehasonlítható a más módszerek által adott eredményekkel.  A pontosság növelése nem szükséges, mivel a talajok osztályokba való csoportosítása a talajérték nagyobb léptékű változása szerint történik. Így elégséges, hogy bizonyos tényezőkre a hálózat által megtanult súlyok jól osztályozzanak. Ezt a hálózat statisztikai értelemben meg is valósítja, mivel a hálózati osztályozók aszimptotikusan egyenértékűek a Bayes-féle statisztikai osztályozó eljárásokkal (Ruck et al., 1990).

  • Schaap, M. G., Leij, F. L. & van Genuchten, M. Th., 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. 62. 847--855.

    'Neural network analysis for hierarchical prediction of soil hydraulic properties. ' () 62 Soil Sci. : 847 -855 .

    • Search Google Scholar
  • Ruck, D. et al., 1990. The Multi-Layer Perceptron as an Approximation of a Bayes Optimal Discriminant Function. IEEE Trans. Neural Networks. 1. 296--298.

    'The Multi-Layer Perceptron as an Approximation of a Bayes Optimal Discriminant Function. ' () 1 IEEE Trans. Neural Networks. : 296 -298 .

    • Search Google Scholar
  • Russell, S. & Norvig, P., 2000. Mesterséges intelligencia. Panem—Prentice Hall. Budapest.

    Mesterséges intelligencia , ().

  • Wösten, J. H. M., Finke, P. A. & Jansen, M. J. W., 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma. 66. 227--237.

    'Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. ' () 66 Geoderma. : 227 -237 .

    • Search Google Scholar
  • Bouma, J., 1989. Using soil survey data for quantitative land evaluation. Adv. Soil Science. 9. 177--213.

    'Using soil survey data for quantitative land evaluation. ' () 9 Adv. Soil Science. : 177 -213 .

    • Search Google Scholar
  • Bryson, A. E. & Ho, Y. C., 1969. Applied Optimal Control. Blaisdell. New York.

    Applied Optimal Control , ().

  • Györfi J. et al., 2004. Földértékelés térinformatikai és statisztikai módszerek alkalmazásával a Csíki-medencében. Sapientia KPI kutatási tanulmány.

  • McBratney, A. B. et al., 2002. From pedotransfer function to soil inference system. Geoderma. 109. 41--73.

    'From pedotransfer function to soil inference system. ' () 109 Geoderma. : 41 -73 .

  • Pachepsky, Ya. A. & Rawlas, W. J., 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci. 63. 1748--1756.

    'Accuracy and reliability of pedotransfer functions as affected by grouping soils. ' () 63 Soil Sci. : 1748 -1756 .

    • Search Google Scholar
  • Pásztohy, Z., 1998. Studiu pedologic complex din com. Sânmartin. Arhiva O. S. P. A. Miercurea. Ciuc.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2023 5 0 0
Nov 2023 1 8 0
Dec 2023 16 0 1
Jan 2024 18 4 0
Feb 2024 21 0 0
Mar 2024 0 0 0
Apr 2024 1 0 0