View More View Less
  • 1 Research Institute for Soil Science and Agricultural Chemistry (RISSAC) of the Hungarian Academy of Sciences H-1022 Budapest 15 Herman Ottó Str. Hungary
  • | 2 College of Dunaújváros Dunaújváros Hungary
  • | 3 Szent István University, Plant Protection Institute Microbiology and Environmental Toxicology Group Gödöllő Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

A pot experiment was designed to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) on barley ( Hordeum vulgare L.) host plant. Soils of the pots were collected from a long-term field microelement loading experiment on calcareous chernozem soil twelve years after 13 heavy metals (Al, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sr and Zn) were applied once in four doses (0, 30, 90 and 270 mg element·kg -1 d.w.). The biomass production and element accumulation of the host plant, the various colonization values of the arbuscular mycorrhiza fungi (AMF) – such as colonization intensity (M %), arbusculum richness (A %) in the root system and the sporulation intensity (g -1 dry soil) in the rhizosphere – were measured. When considering the twelve-year adaptation process of the AM fungal populations at the various metal loads, a relatively balanced inside mycorrhiza colonization was found, suggesting the potentials for the selection of tolerant fungi in metal contaminated soils. The balanced infection intensity (M %) of the AM fungi and their common strategies with the host plant have resulted a nonsignificant shoot and root biomass production of barley in general. Mycorrhiza sporulation in the root system proved to be much variable and indicated the toxicity of metals and metal rates. Cd, Pb and Sr elements significantly reduced spore numbers, while a value of 34 spores·g -1 soil was counted in the case of Ni in comparison to the control’s 22 spores·g -1 soil value. Stress-defending strategies of the fungal–plant symbiosis, such as the increased arbusculum richness (A %) could be established for the Hg and Pb rates. In the case of Cd an increased root biomass production became a tool for stress alleviation and reduced the metal allocation towards the shoots. Mycorrhiza fungi are part of the common plant–microbe interactions and appropriate defending mechanisms in metal contaminated soils.

  • Ahonen-Jonnarth, U. & Finlay, R. D., 2001. Effects of elevated Ni and Cd concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil. 236. 129–138.

  • Biró, B. et al., 1998. Toxicity of field applied heavy metal salts to the rhizobial and fungal microsymbionts of alfalfa and red clover. Agrokémia és Talajtan. 47. 265– 277.

  • Biró, B. et al., 2005. Mycorrhizal functioning as part of the survival mechanisms of barley at long-term heavy metal stress. Acta Biologica Szegediensis. 49. 65–68.

  • Chen, B. et al., 2004. Uptake of Cd from a highly contaminated calcareous soil by arbuscular mycorrhizal maize. Mycorrhiza. 14. 347–354.

  • Füzy, A. et al., 2008. Drought; but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J. Plant Physiology. 165. 1181–1192.

  • Joner, E. J., Briones, R. & Leyval, C., 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil. 226. 227–234.

  • Kádár, I., 1995. The Contamination of Soil–Plant–Animal–Human Food Chain by Toxic Elements in Hungary. (In Hungarian) Akaprint. MTA TAKI. Budapest.

  • Kádár, I., 2003. Effect of microelement loads on winter barley grown on calcareous chernozem soil. (In Hungarian) Agrokémia és Talajtan. 52. 105–120.

  • Kádár, I. et al., 2001. Effect of microelement loads on peas grown on calcareous chernozem soil. II. Element uptake, quality and root symbiosis. (In Hungarian) Agrokémia és Talajtan. 50. 83–98.

  • Kátai, J., 1999. Changes in soil microbiological properties in long-term fertilization experiments. (In Hungarian) Agrokémia és Talajtan. 48. 348–360.

  • Landwehr, M. et al., 2002. The mycorrhiza fungus Glomus geospoum in European saline, sodic and gypsum soils. Mycorrhiza. 12. 199–211.

  • Lakanen, E. & Erviö, R., 1971. A comparison of 7 extractants for the determination of plant available micronutrients on soil. Acta Agronomica Fennica. 123. 223–232.

  • Li, X. L. & Christie, P., 2001. Changes in soil solution Zn and pH, and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere. 42. 201–207.

  • Máthé-Gáspár, G. et al., 2006. Microbial biomass and acid phosphatase activity of the Salix rhizosphere soil near a lead and zinc mine. Cereal Research Communications. 34. 311–314.

  • Malcová, R., Rydlová, J. & Vosátka, M., 2003. Metal-free cultivation of Glomus sp. BEG140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza. 13. 151–157.

  • Meharg, A. A., 2003. The mechanistic basis of interactions between mycorrhiza and toxic metal ions. Mycological Research. 107. 1253–1265.

  • Mikanová, O. et al., 2001. Influence of heavy metal pollution on some biological parameters in the alluvium of the Litavka river. Rostlynna Výroba. 47. 117–122.

  • Murányi, A., 2003. Characterization of the factors determining the quality of soils. (In Hungarian) D.Sc. dissertation. Hungarian Academy of Sciences. Budapest.

  • Pawlowska, T. E. & Chavrat, I., 2004. Heavy-metal stress and developmental patterns of arbuscular mycorrhiza fungi. Applied Environmental Microbiology. 70. 6643–6649.

  • Posta, K. & Sasvári, Z., 2008. Importance of AMF diversity for typical agricultural soil of Hungary with special respect to maize cropping system. In: Mycorrhiza Works. (Eds.: Feldmann, F., Kapulnik, Y. & Baar, J. ) 186–195. Deutsche Phytomedizinische Gesellschaft, Braunschweig, Germany.

  • Simon, L., 2001. Heavy metals, sodium and sulphur in urban topsoils and in the indicator plant chicory ( Cichorium intybus L.). Acta Agronomica Hungarica. 49. 1–13.

  • Takács, T. & Vörös, I., 2003. Effect of metal non-adapted AMF on the Cd, Ni and Zn uptake by ryegrass. Acta Agronomica Hungarica. 51. 347–354.

  • Takács, T., Biró, B. & Vörös, I., 2000. Influence of Cd, Zn and Ni on the diversity of Arbuscular Mycorrhizal Fungi. (In Hungarian) Agrokémia és Talajtan. 49. 465–479.

  • Trouvelot, A.,Kough, J. L. & Gianinazzi-Pearson, V., 1985. Mesure de taux de mycorrhization VA d’un systeme radiculaire. 1st European Symposium Mycorrhizas. 217–221. INRA. Paris.

  • Várallyay, Gy., 2000. Risk assessment and prevention of soil degradation processes in Hungary. In: Foresight and Precaution. (Eds.: Cottam, Harvey, Pape & Tait ). 563–567. Balkema. Rotterdam.

  • Vivas, A. et al., 2003. Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mossae associated with Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology. 24. 177–186.

  • Vivas, A. et al., 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere. 62 . 1523–1533.

  • Vörös, I. et al., 1998. Effect of Arbuscular Mycorhizal Fungi on heavy metal toxicity to Trifolium pratense in soils contaminated with Cd, Zn and Ni salts. Agrokémia és Talajtan. 47. 277-289.

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)


International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)


Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • CABI

Journal Rank
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Cite Score
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Days from submission to acceptance 130
Days from acceptance to publication 152


Journal Rank
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Cite Score
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)


Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
2021 Volume 70
per Year
per Year
Founder Magyar Tudományos Akadémia  
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 4 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 2 0 0
Dec 2021 0 0 0