Authors:
A. Makó Georgikon Faculty, University of Pannonia Department of Plant Production and Soil Science H-8360 Keszthely 16 Deák F. Str. Hungary

Search for other papers by A. Makó in
Current site
Google Scholar
PubMed
Close
,
B. Tóth Georgikon Faculty, University of Pannonia Department of Plant Production and Soil Science H-8360 Keszthely 16 Deák F. Str. Hungary

Search for other papers by B. Tóth in
Current site
Google Scholar
PubMed
Close
,
H. Hernádi Georgikon Faculty, University of Pannonia Department of Plant Production and Soil Science H-8360 Keszthely 16 Deák F. Str. Hungary

Search for other papers by H. Hernádi in
Current site
Google Scholar
PubMed
Close
,
Cs. Farkas

Search for other papers by Cs. Farkas in
Current site
Google Scholar
PubMed
Close
, and
P. Marth Central Plant and Soil Protection Service Budapest Hungary

Search for other papers by P. Marth in
Current site
Google Scholar
PubMed
Close
Restricted access

The Hungarian Detailed Soil Hydrophysical Database, called MARTHA ver2.0 has been developed to collect information on measured soil hydraulic and physical characteristics in Hungary. Recently this is the largest detailed national hydrophysical database, containing controlled information from a total of 15,005 soil horizons. Two commonly used pedotransfer functions were tested to evaluate the accuracy of the predictions on the MARTHA data set, representative for Hungarian soils. In general, the application of both examined pedotransfer functions (Rajkai, 1988; Wösten et al., 1999) was not very successful, because these PTFs are representative for other soil groups. The classification tree method was used to evaluate the effect of soil structure on the goodness of estimations. It was found that using the soil structure data the inaccuracies of soil water retention predictions are more explainable and the structure may serve as a grouping variable for the development of class PTFs.

  • Ahuja, L. R., Naney, J. W. & Williams, R. D., 1985. Estimating soil water characteristics from simpler properties or limited data. Soil Sci. Soc. Am. J. 49. 1100–1105.

  • Anderson, J. L. & Bouma, J., 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Sci. Soc. Amer. Proc. 37. 408–413.

  • Arya, L. M. & Paris, J. F., 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45 . 1023–1030.

  • Bouma, J., 1989. Using soil survey data for qualitative land evaluation. Adv. Soil Sci. 9. 177–213.

  • Bouma, J., Jongerius, A. & Schoonderbeek, D., 1979. Calculation of saturated hydraulic conductivity of some pedal clay soils using micromorphometric data. Soil Sci. Soc. Am. J. 43. 261–264.

  • Bouma, J. & van Lanen, H. A. J., 1987. Transfer functions and threshold values: from soil characteristics to land value. In: Proc of the Int. Workshop on Quantified Land Evaluation Procedures, 27/04–2/05/1986, Washington, D.C. 106–110. ITC Publication 6. Enschede, The Netherlands.

  • Buzás, I. (ed.), 1993. Methods of Soil Analysis. Part 1–2. (In Hungarian) INDA. Budapest.

  • Cosby, B. J. et al., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20. 682–690.

  • Cresswell, H., McKenzie, N. & Paydar, Z., 1999. Strategy for determining hydraulic properties of Australian soils using direct measurements and pedotransfer functions. In: Proc. Int. Workshop Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. (Eds.: van Genuchten, M. Th. Leij, F. & Wu, L. ) 1143–1160. University of California. Riverside, CA.

  • Gupta, S. C. & Larson, W. E., 1979. Estimating soil water retention characteristics from particle size distribution, organic matter content, and bulk density. Water Resour. Res. 15 . 1633–1635.

  • Hodnett, M. G. & Tomasella, J., 2002. Marked differences between van Genuchten soil water retention parameters for temperate and tropical soils: a new water retention pedotransfer functions developed for tropical soils. Geoderma. 108. 155–180.

  • Kätterer, T., Andrén, O. & Jansson, P. E., 2005. Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils. Acta Agric. Scand. Sec. B. 56. 263–276.

  • Leij, F. J. et al., 1999. The UNSODA unsaturated soil hydraulic database. In: Proc. Int. Workshop Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. (Eds.: van Genuchten, M. Th. Leij, F. & Wu, L. ) 1269–1281. University of California. Riverside, CA.

  • Makó, A. et al., 2005. Estimating soil water retention characteristics from the soil taxonomic classification and mapping informations: consideration of humus categories. Cereal Res. Commun. 33. 113–116.

  • McKeague, J. A., Wang, C. & Topp, G. C., 1982. Estimating saturated hydraulic conductivity from soil morphology. Soil Sci. Soc. Am. J. 46. 1239–1244.

  • Minasny, B. & McBratney, A. B., 2002. The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 66. 352–361.

  • Nemes, A., 2002. Unsaturated Soil Hydraulic Database of Hungary: HUNSODA. Agrokémia és Talajtan. 51. 17–26.

  • Nemes, A., Schaap, M. G. & Wösten, J. H. M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. Am. J. 67. 1093–1102.

  • Pachepsky, Ya., Rawls, W. J. & Lin, H. S., 2006. Hydropedology and pedotransfer functions. Geoderma. 131. 308–316.

  • Pachepsky, Ya., Timlin, D. & Rawls, W. J., 2001. Soil water retention as related to topographic variables. Soil Sci. Soc. Am. J. 65. 1787–1795.

  • Pachepsky, Ya., Timlin, D. & Várallyay, Gy., 1995. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60. 727–733.

  • Rajkai, K., 1988. The relationship between water retention and different soil properties. (In Hungarian) Agrokémia és Talajtan. 36–37. 15–30.

  • Rajkai, K., Kabos, S. & Jansson, P. E., 1999. Improving prediction accuracy of soil water retention with concomitant variable. In: Proc. Int. Workshop Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. (Eds.: van Genuchten, M. Th., Leij, f. J. & Wu, L.) 999–1004. USDA. University of California. Riverside.

  • Rajkai, K., Kabos, S. & van Genuchten, M. Th., 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil and Tillage Res. 79. 145–152.

  • Rajkai, K. & Várallyay, Gy., 1989. Estimative calculation of hydrophysical parameters from simply measurable soil properties. Agrokémia és Talajtan. 38. 634–640.

  • Rajkai, K. et al., 1996. Estimation of water-retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Sci. 161. 832–845.

  • Rawls, W. J. & Pachepsky, Ya., 2002. Using field topographic descriptors to estimate soil water retention. Soil Sci. 167. 423–435.

  • Romano, N. & Palladino, M., 2002. Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrology. 265. 56–75.

  • Schaap, M. G., Leij, F. L. & van Genuchten, M. Th., 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62 . 847–855.

  • SPSS for Windows, Rel. 11.0.1. 2001. SPSS Inc. Chicago.

  • Tempel, P., Batjes, N. H. & van Engelen, V. W. P., 1996. IGBP-DIS soil data set for pedotransfer function development. Working paper and Preprint 96/05, International Soil Reference and Information Centre (ISRIC). Wageningen.

  • Tóth, B. et al., 2006. Use of soil water retention capacity and hydraulic conductivity estimation in the preparation of soil water management maps. Agrokémia és Talaj-tan. 55. 49–58.

  • Tóth, G., Hermann, T. & Máté, F., 2008. Notes on the information stored in the lower levels of the Hungarian soil taxonomy. Journal of Central European Agriculture. 9. 589–598.

  • van Genuchten, M. Th. & Leij, F. J., 1992. On estimating the hydraulic properties of unsaturated soils. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. (Eds.: van Genuchten, M. Th., Leij, F. J. & Lund, L. J.) 1–14. University of California. Riverside, CA.

  • Várallyay, Gy. et al., 2009. The state of Hungarian soils (on the basis of the data of the Soil Conservation Information and Monitoring System (TIM)) (In Hungarian). Földművelésügyi Minisztérium Agrárkörnyezetvédelmi Főosztály. Budapest.

  • Vereecken, H. et al., 1989. Estimating the soil moisture retention from characteristic texture, bulk density and carbon content. Soil Sci. 148. 389–403.

  • Wösten, J. H. M., Pachepsky, Ya. A. & Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 251. 123–150.

  • Wösten, J. H. M. et al., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169–185.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 10 1 1
Jul 2023 6 0 0
Aug 2023 29 0 0
Sep 2023 20 0 0
Oct 2023 18 29 0
Nov 2023 13 24 0
Dec 2023 7 0 0