The Hungarian Detailed Soil Hydrophysical Database, called MARTHA ver2.0 has been developed to collect information on measured soil hydraulic and physical characteristics in Hungary. Recently this is the largest detailed national hydrophysical database, containing controlled information from a total of 15,005 soil horizons. Two commonly used pedotransfer functions were tested to evaluate the accuracy of the predictions on the MARTHA data set, representative for Hungarian soils. In general, the application of both examined pedotransfer functions (Rajkai, 1988; Wösten et al., 1999) was not very successful, because these PTFs are representative for other soil groups. The classification tree method was used to evaluate the effect of soil structure on the goodness of estimations. It was found that using the soil structure data the inaccuracies of soil water retention predictions are more explainable and the structure may serve as a grouping variable for the development of class PTFs.
Ahuja, L. R., Naney, J. W. & Williams, R. D., 1985. Estimating soil water characteristics from simpler properties or limited data. Soil Sci. Soc. Am. J. 49. 1100–1105.
Anderson, J. L. & Bouma, J., 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Sci. Soc. Amer. Proc. 37. 408–413.
Arya, L. M. & Paris, J. F., 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45 . 1023–1030.
Bouma, J., 1989. Using soil survey data for qualitative land evaluation. Adv. Soil Sci. 9. 177–213.
Bouma, J., Jongerius, A. & Schoonderbeek, D., 1979. Calculation of saturated hydraulic conductivity of some pedal clay soils using micromorphometric data. Soil Sci. Soc. Am. J. 43. 261–264.
Bouma, J. & van Lanen, H. A. J., 1987. Transfer functions and threshold values: from soil characteristics to land value. In: Proc of the Int. Workshop on Quantified Land Evaluation Procedures, 27/04–2/05/1986, Washington, D.C. 106–110. ITC Publication 6. Enschede, The Netherlands.
Buzás, I. (ed.), 1993. Methods of Soil Analysis. Part 1–2. (In Hungarian) INDA. Budapest.
Cosby, B. J. et al., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20. 682–690.
Cresswell, H., McKenzie, N. & Paydar, Z., 1999. Strategy for determining hydraulic properties of Australian soils using direct measurements and pedotransfer functions. In: Proc. Int. Workshop Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. (Eds.: van Genuchten, M. Th. Leij, F. & Wu, L. ) 1143–1160. University of California. Riverside, CA.
Gupta, S. C. & Larson, W. E., 1979. Estimating soil water retention characteristics from particle size distribution, organic matter content, and bulk density. Water Resour. Res. 15 . 1633–1635.
Hodnett, M. G. & Tomasella, J., 2002. Marked differences between van Genuchten soil water retention parameters for temperate and tropical soils: a new water retention pedotransfer functions developed for tropical soils. Geoderma. 108. 155–180.
Kätterer, T., Andrén, O. & Jansson, P. E., 2005. Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils. Acta Agric. Scand. Sec. B. 56. 263–276.
Leij, F. J. et al., 1999. The UNSODA unsaturated soil hydraulic database. In: Proc. Int. Workshop Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. (Eds.: van Genuchten, M. Th. Leij, F. & Wu, L. ) 1269–1281. University of California. Riverside, CA.
Makó, A. et al., 2005. Estimating soil water retention characteristics from the soil taxonomic classification and mapping informations: consideration of humus categories. Cereal Res. Commun. 33. 113–116.
McKeague, J. A., Wang, C. & Topp, G. C., 1982. Estimating saturated hydraulic conductivity from soil morphology. Soil Sci. Soc. Am. J. 46. 1239–1244.
Minasny, B. & McBratney, A. B., 2002. The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 66. 352–361.
Nemes, A., 2002. Unsaturated Soil Hydraulic Database of Hungary: HUNSODA. Agrokémia és Talajtan. 51. 17–26.
Nemes, A., Schaap, M. G. & Wösten, J. H. M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. Am. J. 67. 1093–1102.
Pachepsky, Ya., Rawls, W. J. & Lin, H. S., 2006. Hydropedology and pedotransfer functions. Geoderma. 131. 308–316.
Pachepsky, Ya., Timlin, D. & Rawls, W. J., 2001. Soil water retention as related to topographic variables. Soil Sci. Soc. Am. J. 65. 1787–1795.
Pachepsky, Ya., Timlin, D. & Várallyay, Gy., 1995. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60. 727–733.
Rajkai, K., 1988. The relationship between water retention and different soil properties. (In Hungarian) Agrokémia és Talajtan. 36–37. 15–30.
Rajkai, K., Kabos, S. & Jansson, P. E., 1999. Improving prediction accuracy of soil water retention with concomitant variable. In: Proc. Int. Workshop Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. (Eds.: van Genuchten, M. Th., Leij, f. J. & Wu, L.) 999–1004. USDA. University of California. Riverside.
Rajkai, K., Kabos, S. & van Genuchten, M. Th., 2004. Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil and Tillage Res. 79. 145–152.
Rajkai, K. & Várallyay, Gy., 1989. Estimative calculation of hydrophysical parameters from simply measurable soil properties. Agrokémia és Talajtan. 38. 634–640.
Rajkai, K. et al., 1996. Estimation of water-retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Sci. 161. 832–845.
Rawls, W. J. & Pachepsky, Ya., 2002. Using field topographic descriptors to estimate soil water retention. Soil Sci. 167. 423–435.
Romano, N. & Palladino, M., 2002. Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrology. 265. 56–75.
Schaap, M. G., Leij, F. L. & van Genuchten, M. Th., 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62 . 847–855.
SPSS for Windows, Rel. 11.0.1. 2001. SPSS Inc. Chicago.
Tempel, P., Batjes, N. H. & van Engelen, V. W. P., 1996. IGBP-DIS soil data set for pedotransfer function development. Working paper and Preprint 96/05, International Soil Reference and Information Centre (ISRIC). Wageningen.
Tóth, B. et al., 2006. Use of soil water retention capacity and hydraulic conductivity estimation in the preparation of soil water management maps. Agrokémia és Talaj-tan. 55. 49–58.
Tóth, G., Hermann, T. & Máté, F., 2008. Notes on the information stored in the lower levels of the Hungarian soil taxonomy. Journal of Central European Agriculture. 9. 589–598.
van Genuchten, M. Th. & Leij, F. J., 1992. On estimating the hydraulic properties of unsaturated soils. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. (Eds.: van Genuchten, M. Th., Leij, F. J. & Lund, L. J.) 1–14. University of California. Riverside, CA.
Várallyay, Gy. et al., 2009. The state of Hungarian soils (on the basis of the data of the Soil Conservation Information and Monitoring System (TIM)) (In Hungarian). Földművelésügyi Minisztérium Agrárkörnyezetvédelmi Főosztály. Budapest.
Vereecken, H. et al., 1989. Estimating the soil moisture retention from characteristic texture, bulk density and carbon content. Soil Sci. 148. 389–403.
Wösten, J. H. M., Pachepsky, Ya. A. & Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 251. 123–150.
Wösten, J. H. M. et al., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169–185.