View More View Less
  • 1 Szegedi Tudományegyetem Természeti Földrajzi és Geoinformatikai Tanszék 6720 Szeged Egyetem u. 2.
  • | 2 Debreceni Egyetem Természetföldrajzi és Geoinformatikai Tanszék Debrecen
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

Összefoglalva megállapítható, hogy nagyobb szélsebesség hatására több talajanyag erodálódott, és ezzel együtt megnőtt az áthalmozott tápanyag mennyisége is. Minden vizsgált szélsebesség esetében a szélerózió következtében 3–7%-kal megnőtt az 1 mm és annál nagyobb szemcsék, illetve aggregátumok aránya a kiindulási talajanyag felső 0–1 cm-es rétegében. A finomabb szemcse-, illetve aggregátum-átmérők esetén a fújatást követően csökkenést tapasztaltunk. A leginkább a 315 μm és az annál kisebb szemcsék aránya csökkent, átlagosan 1–2%-kal. A minták kémiai és fizikai elemzéseiből megállapítható, hogy a láda utáni humuszosabb, aggregátumosabb szerkezetű minták N-tartalma nagyobb, mint az alapmintáé. A fogók mintáiban nem tapasztaltunk feldúsulást egy vizsgált elem esetében sem, a fogókban összegyűlt talajanyag kálium- és foszfortartalma is kisebb volt, mint az alapmintáé. Ennek oka, hogy az itt csapdázódott üledékben kisebb a tápanyag-megkötődés helyéül szolgáló leiszapolható rész aránya, mint a kiindulási talajanyagban. A vizsgálatainkból látszik, hogy a szélerózió hatására a lebegtetve, illetve ugráltatva áthalmozott talajszemcsékkel és aggregátumokkal szállított humusz 500–3500 kg/ha nagyságrendben mozoghat a vizsgált csernozjom területen akár egyetlen szélesemény hatására is. A kálium-áthalmozódás mértéke elérheti a 100 kg/ha értéket, a foszforé a 70 kg/ha-t, a nitrogénveszteség mértéke pedig akár 200–300 kg/ha is lehet egy szélesemény alkalmával. E tápanyagmennyiség nagy része több száz méter, de akár kilométeres távolságokra is távozhat a területről. Az általunk végzett szélcsatornás vizsgálatok eredményei becslésnek tekinthetők, hiszen vizsgálatunk során növénymaradvány-mentes, szitált és légszáraz talajanyaggal dolgoztunk. A szitálás eredményeként csupán a 2 mm-es és annál kisebb aggregátumok maradtak meg, ami azonban az intenzív művelés alá vont, porosodott, leromlott szerkezetű talajfelszín körülményeit jól közelíti. Ugyanakkor a természetben zajló széleróziós eseményeknek a szélcsatorna-kísérlet csak leegyszerűsített modellváltozata, hiszen az általunk szimulált szélesemények 15 percig tartottak, s nem tudtunk széllökéseket előállítani, melyek a széleróziós események alakulásában nagy jelentőségűek. Ennek tudatában kell a kapott eredményeket értékelni, mégis érdemes velük foglalkozni. A terepi mérésekkel szemben a szélcsatornában végzett vizsgálatoknak éppen az a legfontosabb előnye, hogy ellenőrzött, kontrollált körülmények között végezzük a méréseket, így rengeteg olyan szempontot meg tudunk vizsgálni, amit terepi mérésekkel lehetetlen lenne. Ilyen szempontok a pontos szélsebesség és szélirány hatása, az erodált felület nagysága és tulajdonságai. Kutatásunk következő lépése a szélcsatornás kísérletekkel vizsgált mintaterületeken terepi, mobil szélcsatornás vizsgálatok végzése, valamint terepi üledékcsapdák elhelyezésével a valós szélesemények által elszállított talaj mennyiségének és minőségének meghatározása. Célunk mind pontosabb képet alkotni a hazai jó minőségű csernozjom talajok szélerózió okozta tápanyagveszteségének mértékéről. A mezőgazdasági művelés alatt álló csernozjom területek feltalajában a tápanyag és szerves anyag szélerózió útján történő mozgási törvényszerűségeinek feltárása több szempontból is hasznos: segítséget jelent a területi tervezésben, a defláció szempontjából optimális területhasználat és művelési módok meghatározásában. Képet kapunk arról, hogy a legnagyobb gazdasági potenciállal rendelkező termőtalajunk milyen veszélyeknek van kitéve, s hogy a nem megfelelő időben, nem megfelelő nedvességviszonyok mellett történő talajművelés következtében kialakuló szerkezetromlás (porosodás) miatti deflációs károk milyen tápanyagveszteséggel járhatnak együtt.

  • Bach, M., 2008. Aolische Stofftransporte in Agrarlandschaftem. PhD Dissertation. Christian-Albrechts Universitat. Kiel.

  • Bódis K. & Szatmári J., 1998. Eolikus geomorfológiai vizsgálatok DDM felhasználásával. In: VII. Térinformatika a felsőoktatásban szimpózium. Budapest. 102–107.

  • Bodolay I.-né, 1966. A széleróziót befolyásoló változó talajfizikai tulajdonságok. Agrokémia és Talajtan. 15. 372–383.

  • Bodolay I.-né,Máté F. & Szűcs L., 1976. A szélerózió hatása a Bácskai löszháton. Agrokémia és Talajtan. 25. 96–103.

  • Borsy Z., 1972. A szélerózió vizsgálata a magyarországi futóhomok területeken. Földrajzi Közlemények. 20. (2–3) 156–160.

  • Farsang A. & Barta K., 2004. A talajerózió hatása a feltalaj makro- és mikroelem tartalmára. Talajvédelem különszám. 268–276. Talajvédelmi Alapítvány Kiadó.

  • Larney, F. J. et al., 1998. Wind erosion effects on nutrient redistribution and soil productivity. Journal of Soil and Water Conservation. 53. (2) 133–140.

  • Leys, J. & McTainsh, G., 1994. Soil loss and nutrient decline by wind erosion – cause for concern. Australian Journal of Soil and Water Conservation. 7. (3) 30–35.

  • Lóki, J., 2000. The study of wind erosion on different soil by wind tunnel. In: Anthropogenic Aspects of Landscape Transformations 1. Proc. Hungarian–Polish Symposium. (Eds.: Lóki, J. & Szabó, J.) 37–44. Debrecen.

  • Lóki J., 2003. A szélerózió mechanizmusa és magyarországi hatásai. MTA doktori értekezés. Debrecen.

  • Lóki J. & Schweitzer F., 2001. Fiatal futóhomokmozgások kormeghatározási kérdései – Duna–Tisza közi régészeti feltárások tükrében –. Acta Geographica Geologica et Meteorologica Debrecina. XXXV. 175–183.

  • Lóki, J. & Szabó, J., 1996. Neuere Windkanaluntersuchungen der Deflations-sensibilität von Böden des Ungarischen Tieflandes. Zeitschrift für Geo-morphologie. 40. 145–159.

  • Lóki J. & Szabó J., 1997. Az alföldi talajok deflációérzékenységi vizsgálata szélcsatornában. In: Regionális Agrárkutatási és Vidékfejlesztési Workshop, Kompolt. 73–83.

  • Marsi, Z. et al., 2003. Wind erosion in a marginal mediterranean dryland area: a case study from the Khanasser Valley, Syria. Earth Surface Processes and Landforms. 28. 1211–1222.

  • Mezősi, G. & Szatmári, J., 1998. Assessment of wind erosion risk on the agricultural area of the southern part of Hungary. Journ. Hazardous Materials. 61. 139–153.

  • Mucsi, L. & Szatmári, J., 1998. Landscape changes of a blown sand surface on the Great Hungarian Plain. The problems of landscape ecology. III. Warsaw. 215–222.

  • Neemann, W., 1991. Bestimmung des Bodenerodierbarkeitsfaktors für winderosions-gefahrdete Böden Norddeutschlands – Ein Beitrag zur Quantifizierung der Boden-verluste. Geologisches Jahrbuch. 25. Hannover.

  • Sterk, G., Hermann, L. & Bantiono, A., 1996. Wind-blown nutrient transport and soil productivity changes in South-West Niger. Land Degradation & Development. 7. 325–335.

  • Szatmári, J., 1997. Evaluation of wind erosion risk on the SE part of Hungary. Acta Geographica Szegediensis. XXXVI. 121–135.

  • Szatmári, J., 2005. The evaluation of wind erosion hazard for the area of the Danube–Tisza Interfluve using the revised wind erosion equation. Acta Geographica Szegediensis. XXXVIII. 84–93.

  • Van Donk, S. J. & Skidmore, E. L., 2001. Field experience and evaluating wind erosion models. Annals of Arid Zone. 40. (3) 281–302.

  • Zobeck, T. & Fryrear, D. W., 1986. Chemical and physical characteristics of windblown sediment. Transaction of the ASAE. 29. 1037–1041.

  • Zobeck, T., Fryrear, D. W. & Petit, R. D., 1989. Management effects on wind-eroded sediment and plant nutrients. J. Soil & Water Conservation. 44. 160–163.

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 22 2 3
Sep 2021 8 2 2
Oct 2021 8 0 0
Nov 2021 11 0 0
Dec 2021 9 0 0
Jan 2022 6 2 0
Feb 2022 0 0 0