Authors:
Orsolya SzécsyMTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest Herman Ottó út 15.

Search for other papers by Orsolya Szécsy in
Current site
Google Scholar
PubMed
Close
,
Nikolett UzingerMTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest Herman Ottó út 15.

Search for other papers by Nikolett Uzinger in
Current site
Google Scholar
PubMed
Close
,
Ilona VillányiMTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest Herman Ottó út 15.

Search for other papers by Ilona Villányi in
Current site
Google Scholar
PubMed
Close
,
Tibor Szili-KovácsMTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest Herman Ottó út 15.

Search for other papers by Tibor Szili-Kovács in
Current site
Google Scholar
PubMed
Close
, and
Attila AntonMTA Talajtani és Agrokémiai Kutatóintézet 1022 Budapest Herman Ottó út 15.

Search for other papers by Attila Anton in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Jelen tanulmányban a Magyarországon jellemzően előforduló nehézfém-szennyezők közé tartozó króm, ólom és cink hatását vizsgáltuk egyes talajmikrobiológiai és -biokémiai mutatókra, valamint összefüggést kerestünk e fémek különböző kivonószerekkel oldható frakciói és a vizsgált biológiai paraméterek között. A kísérletben az egyre elterjedtebben alkalmazott lignitet használtuk stabilizálószerként. A 8 hetes inkubációs modellkísérletet 2006-ban nyírlugosi savanyú homoktalajjal, DISITOBI kísérlettervező és értékelő modellel állítottuk be, mely lehetővé tette a változók lineáris, kvadratikus és párkölcsönhatásainak vizsgálatát. A nehézfémeket és a lignitet 5 különböző dózisban juttattuk az edényekbe. Mértük a Cr, az Pb és a Zn „összes” királyvízzel, illetve desztillált vízzel, acetát-pufferrel, Lakanen-Erviö-féle kivonószerrel oldható fémtartalmat. A talajmikrobiótában bekövetkező változásokat az invertáz enzimaktivitás, az FDA (fluoreszcein-diacetát) hidrolitikus aktivitás (fluoreszcein-diacetát), a mikrobiális biomassza-C (CFE), valamint az „összes” foszfolipid-zsírsav tartalom (PLFA analízis) meghatározásával becsültük. A DISITOBI modellen kívül a változókat főkomponens-analízissel és lineáris korreláció vizsgálattal is értékeltük (StatSoft Statistica 9-es verzió). A vizsgált kivonószerekkel kioldható fémtartalom és az alkalmazott talajmikrobiológiai és -biokémiai mutatók között ugyan tudtuk igazolni a korrelációt, de jelen kivonószerekkel ez egy esetben sem volt szoros. A főkomponens-analízis, illetve a korreláció vizsgálat alapján megállapítható, hogy nem találtunk összefüggést a királyvizes, a desztillált vizes, az acetát-pufferes, a Lakanen-Erviö-féle kivonószerekkel oldható Cr-, Pb- és Zn-tartalmak, illetve a talajmikrobiológiai és -biokémiai mutatók változása között. E szerint ezek a kivonószerek nem jelezték a talajmikrobióta számára hozzáférhető frakciót. A króm talajmikrobiótára gyakorolt egyértelműen negatív hatását közepes és laza korrelációban is tapasztaltuk, kivonószertől függetlenül. Részben igazolható volt az ólom negatív hatása, ez azonban eltérő a vizsgált talajmikrobiológiai és -biokémiai mutatók szerint. A cink esetében szinte egyáltalán nem tudtunk negatív hatást kimutatni. Ennek oka feltételezhetően az, hogy a Zn (mint esszenciális elem) jelentős pozitív szerepet játszik a talajmikrobióta működésében.

  • Adam, G. & Duncan, H., 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry. 33. 943–951.

  • Adriano, D. C., 2001. Trace elements in terrestrial environments: Biogeochemistry, Bioavailability, and Risks of Metals. 38–84. Springer-Verlag Press. New York.

  • Anton, A. et al., 1994. Effects of environmental factors and Mn, Zn, Cu trace elements on the soil phosphomonoesterase and amidase activity. Application of DISITOBI model. Acta Biologica Hungarica. 45. 39–50.

  • Anton, A. et al., 1996. Effects of environmental factors and Mn, Zn, Cu trace elements on the available N content of two soils. In: Progress in Nitrogen Cycling Studies (Eds.: Cleemput, O., Hofman, G. & Vermoesen, A.). 173–177. Kluwer Academic Publishers. Doordrecht.

  • Bartus, T. et al., 2003. Kármentesítési beruházások műszaki ellenőrzése. In: Kármentesítési Útmutató 5 (Szerk.: Németh T.). 34–73. KvVM. Budapest.

  • Becker, J. M. et al., 2006. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microbial Ecology. 51. 220–231.

  • Biczók, Gy., Tolner, L. & Simán, Gy., 1994. Method for the determination of multivariate response functions. Bulletin of the University of Agricultural Sciences. 1993–1994. 5–16.

  • Bligh, E. G. & Dyer, W. J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37. 911–917.

  • Bragato, G. et al., 1998. Effects of sewage sludge pre-treatment on microbial biomass and bioavailability of heavy metals. Soil and Tillage Research. 46. 129–134.

  • Brookes, P. C. et al., 1984. Effects of heavy metals on microbial activity and biomass in field soils treated with sewage sludge. In: Environmental Contamination. 574–583. Publishers CEP Ltd. Edinburgh.

  • Brown, P. E. & Minges, G. A., 1916. The effect of some manganese salts on ammonification and nitrification. Soil Sci. 1. 67–85.

  • Bunemann, E. K., Schwenke, G. D. & van Zwieten, L., 2006. Impact of agricultural inputs on soil organisms. Australian Journal of Soil Research. 44. 379–406.

  • Csathó P., 1994. A környezet nehézfém szennyezettsége és az agrártermelés. Tematikus szakirodalmi szemle. MTA Talajtani és Agrokémiai Kutató Intézete. AKAPRINT. Budapest.

  • Franzluebbers, A. J. et al., 1999. Assessing biological soil quality with chloroform fumigation-incubation: why subtract a control? Canadian Journal of Soil Science. 79. 521–528.

  • Giller, K. E., Witter, E. & McGrath, S. P., 2009. Heavy metals and soil microbes. Soil Biology and Biochemistry. 41. 2031–2037.

  • Horswell, J. et al., 2006. Impact of heavy metal amended sewage sludge on forest soils as assessed by bacterial and fungal biosensors. Biol. Fertil. Soils. 42. 569–576.

  • Joergensen, R. G., 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biology and Biochemistry. 28. 25–31.

  • Kádár I., 1995. A talaj–növény–állat–ember tápláléklánc szennyeződése kémiai elemekkel Magyarországon. Környezetvédelmi és Területfejlesztési Minisztérium– MTA TAKI. Budapest.

  • Kelly, J. J., Häggblom, M. & Tate, R. L., 1999. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry. 31. 1455–1465.

  • Kolesnikov, S. I. et al., 2009. Changes in the ecological and biological properties of ordinary chernozems polluted by heavy metals of the second hazard class (Mo, Co, Cr and Ni). Eurasian Soil Science. 42. 936–942.

  • Lakanen, E. & Erviö, R., 1970. A comparison of eight extractants for the determina-tion of plant available micronutrients in soil. Acta Agr. Fenn. 123. 223–232.

  • Lipman, C. B. & Burgess, P. S., 1914. The effects of copper, zinc, iron and lead salts on ammonification and nitrification in soil. University of California Publications in Agricultural Science. 1. 127–139.

  • Morgan, A. J., Kille, P. & Stürzenbaum, S. R., 2007. Microevolution and ecotoxicology of metals in invertebrates. Environmental Science and Technology. 41. 1085–1096.

  • MSz-08-1721/2:1986 Szennyvízzel, szennyvíziszappal kezelt mezőgazdaságilag hasznosított területek talajvizsgálata. Talajbiológiai aktivitás vizsgálat szacharáz enzimaktivitási módszerrel.

  • MSz-21470-50:2006 Környezetvédelmi talajvizsgálatok. Az összes és az oldható toxikuselem-, a nehézfém- és a króm(VI)tartalom meghatározása.

  • MSzE-21420-31:2006 Hulladékok jellemzése. 31. rész: Ammónium-acetát-pufferes hulladékkivonat készítése fizikai, kémiai és ökotoxikológiai vizsgálatokhoz.

  • Pérez-de-Mora, A., Engel, M. & Schloter, M., 2011. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: A molecular study on alkB homologous genes. Microb Ecol. Published online: 13 May 2011, http://www.springerlink.com/content/22u4675777327284/fulltext.html

  • Rajapaksha, R. M. C. P., Tobor-Kapłon, M. A. & Bååth, E., 2004. Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology. 70. 2966–2973.

  • Sárdi K., 2003. Agrokémia: A növénytáplálás alapjai. 27–45. Jegyzet. VE Georgikon Mezőgazdaságtud. Kar. Keszthely.

  • Schnürer, J. & Rosswall, T., 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology. 43. 1256–1261.

  • Sváb J., 1973. Biometriai módszerek a kutatásban. Mezőgazdasági Kiadó. Budapest,

  • Vadász J., 1997. Huminsavak és fulvósavak a növényi életfolyamatokban. PRI-KOMP Kft. Veszprém.

  • Vance, E. D., Brookes, P. C. & Jenkinson, D. S., 1987. An extraction method for measuring soil microbial biomass-C. Soil Biology and Biochemistry. 19. 703–707.

  • Vásquez-Murrieta, M. S. et al., 2006. C and N mineralization and microbial biomass in heavy-metal contaminated soil. European Journal of Soil Biology. 42. 89–98.

  • Wang, Q. et al., 2010. Efficiencies of different microbial parameters as indicator to assess slight metal pollutions in a farm field near a gold mining area. Environ. Monit. Assess. 161. 495–508.

  • White, D. C. et al., 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia. 40. 51–62.

  • Wu, J. et al., 1990. Measurement of soil microbial biomass C by fumigation-extraction – an automated procedure. Soil Biology and Biochemistry. 22. 1167–1169.

  • Zhang, C. et al., 2006. Structure and function of microbial communities during the early stages of revegetation of barren soils in the vicinity of a Pb/Zn smelter. Geoderma. 136. 555–565.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2022 9 0 0
Jan 2023 13 0 0
Feb 2023 5 1 1
Mar 2023 5 0 0
Apr 2023 2 0 0
May 2023 4 0 0
Jun 2023 0 0 0