View More View Less
  • 1 MTA Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet (MTA ATK TAKI) 1022 Budapest Herman Ottó út 15.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

Duna–Tisza közi karbonátos homoktalajon, az MTA ATK TAKI Õrbottyáni Kísérleti Telepén vizsgáltuk az eltérő minőségű komposztok és a húsliszt hatását a talajtulajdonságokra, ill. néhány talajvizsgálati jellemzőre. A heterogén talaj 0–8% közötti CaCO3- és 1,0–1,5% humuszkészlettel rendelkezett. A humuszos szint vastagsága 60–80 cm, a pH(H2O) 6,8–7,5, a pH(KCl) 6,3–7,3 közötti értékeket mutatott. Az agyagfrakció mennyisége 10–15%-ot tett ki. A termőhely felvehető foszforral közepesen, nitrogénnel és káliummal gyengén ellátott volt. A kísérleteket 2002-ben és 2003-ban állítottuk be egyenként 5 kezeléssel (0, 25, 50, 100 és 200 t·ha-1 friss komposzt, vagy 0, 2,5, 5, 10 és 20 t·ha-1 húsliszt), 4 ismétléssel, azaz 20-20 (egyenként 5×8= 40 m²-es) parcellával, véletlen blokk elrendezésben. Egyszeri terhelést alkalmaztunk 2002-ben, a további években a komposztok és húsliszt trágyaszerek utóhatásait figyeltük meg. A maximális 200 t·ha-1 komposzt-, illetve a 20 t·ha-1 csontos húslisztadag kereken 20–120 t·ha-1 szárazanyag, 12–48 t·ha-1 szerves anyag, 0,6–6,8 t·ha-1 zsír bevitelét jelentette. Az ásványi elemek maximuma elérte a 13,5 t·ha-1 Ca (33,7 t·ha-1 CaCO3), illetve a 11,6 t·ha-1 P (26,6 t·ha-1 P2O5) mennyiséget. A K-, Mg-, Na- és S-bevitel is több száz kg·ha-1-nak adódott a komposztok esetén. A Zn kereken 42, a Mn 21, a Sr 18, a Ba 12, a Cu 8, a Cr 2 kg·ha-1 maximális terhelést jelzett. Az éretlen komposztban az NH4-N forma 275, a félérettben 113 kg·ha-1 mennyiséget ért el. Az érett komposzttal ugyanakkor maximálisan 193 kg·ha-1 műtrágya-egyenértékű NO3-N-t szántottunk alá. Az érett vágóhídi komposzt hatása 6 év után is igazolható volt a talaj szántott rétegének humusz-, összes-N-, összes P- és S-, valamint oldható P-, S-, Fe-, Zn- és Mo-tartalmának emelkedésén. A bevitt szerves anyag közel fele, az összes-N 18– 20%-a beépülhetett a talaj tartós humuszanyagaiba. Az éretlen komposzt terheléssel szintén igazolhatóan emelkedett a feltalaj szervesanyag-, összes N- és NO3-N-, összes P-, összes S- és Na-készlete. Az oldható elemek közül a P, K, Na, S, Zn és Cu jelzett dúsulást az egyes években. A félérett komposzt hatására 50%-kal nőtt a feltalaj szervesanyag-, illetve több mint kétszeresére az összes-N-készlete. A talajszerkezetre gyakorolt kedvező hatás a 6. évben is igazolható volt. Hasonlóképpen az „összes” és az oldható P, S, Na és Zn elemtartalmakban való gyarapodás. A növekvő csontos húslisztterheléssel átmenetileg 0,5 értékkel igazolhatóan mérséklődött a pH(H2O), emelkedett az „összes” só, az összes-N és ásványi-N frakciók mennyisége. A savtermelő nitrifikáció méreteire és sebességére utal, hogy 13-szorosára nőtt a szántott réteg NO3-N-, illetve 6-szorosára az NH4-N-koncentrációja az 1. évben. Maximálisan mintegy 400 kg NO3-N + 165 kg NH4-N tárult fel hektáronként. Az aszályos 2003-ban a kukorica csekély termésével nem tudta hasznosítani a sok ásványi-N-t, mely feltehetően az altalajba távozhatott. A 6. évben a húsliszt lebomlott és a mobilis bomlástermékei eltűntek (NO3-N, vízoldható sók, savak). Összefoglalva megállapítható, hogy míg a húsliszt gyorsan bomló trágya, úgy NO3-érzékeny területeken az előírt 170 kg·ha-1·év-1 N-terhelés túllépését kerülni kell. Az éretlen és félérett komposzt viszont több éven át lassan ásványosodik a talajban és nitrogénjének egy része tartósan beépülhet a talaj humuszanyagaiba. Az előírt 170 kg·ha-1·év-1 N-terhelésre vonatkozó korlátozást ezért nem szükséges ezekre a szerves trágyaszerekre kiterjeszteni, a terhelés a 2–3-szorosára növelhető.

  • Baranyai F., Fekete A. & Kovács I., 1987. A magyarországi talaj tápanyagvizsgálatok eredményei. Mezőgazdasági Kiadó. Budapest.

  • Kádár I., Draskovits E. & Morvai B., 2009a. Gyümölcslé gyártási hulladék komposzt (RAUCH) hatásának vizsgálata karbonátos homoktalajon. Növénytermelés. 58. (2) 23–40.

  • Kádár I. & Ragályi P., 2012a. Vágóhídi hulladékok hatása a növények elemtartalmára karbonátos homoktalajon. Agrokémia és Talajtan. 61. 165–182.

  • Kádár I. & Ragályi P., 2012b. Vágóhídi hulladékok hatása növények termésére karbonátos homoktalajon. Növénytermelés. 61. (Megjelenés alatt)

  • Kádár I. et al., 2009b. Kommunális szennyvíziszap, illetve vágóhídi hulladék komposzt hatása a talajra és a növényre szabadföldi kísérletben. Agrokémia és Talajtan. 58. 121–136.

  • Kjeldahl, J., 1891. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschr. F. analyt. Chemie. 22. 366–382.

  • Klimes-Szmik A., 1955. Aljtrágyázott homok tápanyagviszonyai és földművelési vonatkozásai. Agrokémia és Talajtan. 4. 313–334.

  • Lakanen, E. & Erviö, R., 1971. A comparison of eight extractants for the determination of plant available microelements in soils. Acta Agr. Fenn. 123. 223–232.

  • MÉM NAK, 1978. A TVG tápanyagvizsgáló laboratórium módszerfüzete. MÉM Növényvédelmi és Agrokémiai Központ. Budapest.

  • Stefanovits P., 1966. Hazánk homoktalajainak jellemzése. In: Növénytermesztés homokon. (Szerk.: Antal J.) 9–22. Mezőgazdasági Kiadó. Budapest.

  • Sváb J., 1981. Biometriai módszerek a kutatásban. Mezőgazdasági Kiadó. Budapest.

  • Thamm F.-né, 1990. Növényminták nitráttartalmának meghatározását befolyásoló tényezők vizsgálata. Agrokémia és Talajtan. 39. 191–206.

  • Tyurin, I. V., 1937. Organicseszkie vescsesztva pocsv Szel’hozgiz. Moszkva.

  • Várallyay Gy., 1984. Magyarországi homoktalajok vízgazdálkodási problémái. Agrokémia és Talajtan. 33. 159–169.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 2 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0