Author:
Hilda HernádiPannon Egyetem Georgikon Kar 8360 Keszthely Deák F. u. 16.

Search for other papers by Hilda Hernádi in
Current site
Google Scholar
PubMed
Close
Restricted access
  • Abriola, L. M., 1984. Multiphase migration of organic compounds in a porous medium. A mathematical moDel. In: Lecture Notes in Engineering. 8. (Eds.: Brebbia, C. A. & Orszag, S. A.) Springer-Verlag. Berlin–Heidelberg–New York–Tokyo.

  • Abriola, L. M. & Demond, A. H., 2004. Migration and Entrapment of DNAPLs in Heterogeneous Systems: Impact of Waste and Porous Medium Composition. Final report. The University of Michigan, Department of Civil and Environmental Engineering. US.

  • Adam, G & Duncan, H., 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry. 33. 943–951.

  • Amyx, J. W., Bass, D. M. & Whitting, R. L., 1960. Petroleum Reservoir Engineering. Physical Properties. McGraw-Hill Book Company. New York.

  • Anderson, M. R., 1988. The dissolution and transport of dense nonaqueous phase liquids in saturated porous media. PhD Dissertation. Oregon Graduate Center. Beaverton, Oregon.

  • Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill. New York.

  • Bouma, J., 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science. 9. 177–213.

  • Bradford, S. A. & Leij, F. J., 1995. Fractional wettability effects on 2-fluid and 3-fluid capillary pressure-saturation relations. Journal of Contaminant Hydrology. 20. 89–109.

  • Bradford, S. A., Phelan, T. J. & Abriola, L. M., 2000. Dissolution of residual tetrachloroethylene in fractional wettability porous media: Correlation development and application. Journal of Contaminant Hydrology. 45. 36–61.

  • Bradford, S. A. et al., 2003. Entrapment and dissolution of DNAPL in heterogenous porous media. Journal of Contaminant Hydrology. 67. 133–157.

  • Brooks, R. H. & Corey, A. T., 1964. Hydraulic Properties of Porous Media. Hydrology Paper 3. Colorado State University. Fort Collins.

  • Brost, E. J. & DeVaull, G. E., 2000. Non-aqueous phase liquid (NAPL) mobility limits in soil. Soil & Groundwater Research Bulletin. API. No. 9. 1–9.

  • Brown, H. W., 1951. Capillary pressure investigations. Transactions of the American Institute of Mining Engineers. 192. 67–74.

  • Brown, R., 1994. Treatment of petroleum hydrocarbons in ground water by air sparging. In: Handbook of Bioremediation. 4.1 – 4.25. Lewis Publishers, Boca Raton, FL.

  • Brunauer, S., Emmett, P. H. & Teller, E., 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60. (2) 309–319.

  • Brutsaert, W., 1966. Probability laws for pore size distributions. Soil Science. 101. 85–92.

  • Calhoun, J. C., Lewis, M. & Newman, R. C., 1949. Experiments on the capillary properties of porous solids. Transactions of the American Institute of Mining Engineers. Petroleum Division. 186. 189–196.

  • Carry, J. W., Simmons, C. S. & McBride, J. F., 1989. Predicting oil infiltration and redistribution in unsaturated soils. Soil Sci. Soc. Am. J. 53. 335–342.

  • Carry, J. W., Simmons, C. S. & McBride, J. F., 1994. Infiltration and redistribution of organic liquids in layered porous media. Soil Sci. Soc. Am. J. 58. 704–711.

  • Carsel, R. F. & Parrish, R. S., 1988. Developing joint probability distribution of soil water retention characteristics. Water Resources Research. 24. 755–769.

  • Chen, J., Hopmanns, J. W. & Grismer, M. E., 1999. Parameter estimation of two-fluid capillary pressure-saturation and permeability functions. Advances in Water Resources. 22. 479–493.

  • Corey, A. T., 1977. Mechanics of Heterogenous Fluids in Porous Media. Water Resources Publications. Fort Collins, CO.

  • Culligan, K. A. et al., 2006. Pore-scale characteristics of multiphase flow in porous media: a comparison of air-water and oil-water experiments. Advances in Water Resources. 29. 227–238.

  • Dane, J. H., Oostrom, M. & Missildine, B. C., 1992. An improved method for the determination of capillary pressure-saturation curves involving TCE, water, and air. Journal of Contaminant Hydrology. 11. 69–81.

  • Darnault, C. J. G. et al., 1998. Visualization by light transmission of oil and water contents in transient two-phase flow fields. Journal of Contaminant Hydrology. 31. 337–348.

  • Demond, H., 1988. Capillarity in two phase liquid flow of organic contaminants in groundwater. PhD dissertation. Stanford University. Stanford, CA.

  • Demond, A. H. & Roberts, P. V., 1991. Effects of interfacial forces on the two-phase capillary-pressure relationships. Water Resources Research. 27. 423–437.

  • Demond, A. H. & Roberts, P. V., 1993. Estimatiopn of two-phase relative permeability relationships for organic liquid contaminants. Water Resources Research. 29. 1081–1090.

  • Demond, A. H., Rathfelder, K. M. & Abriola, L. M., 1996. Simulation of organic liquid flow in porous media using estimated and measured transport properties. Journal of Contaminant Hydrology. 22. 223–239.

  • DePastrovitch, T. L. et al., 1979. Protection of Groundwater from Oil Pollution. CONCAWE Rep. No 3/79. Den Haag, Netherlands.

  • Downey, M. W., 1984. Evaluating seals for hydrocarbon accumulations. The American Association of Petroleum Geologists Bulletin. 68. 1752–1763.

  • Eching, S. O., Hopmans, J. W. & Wandroth, O., 1994. Unsaturated hydraulic conductivity from transient multi-step outflow and soil water pressure data. Soil Sci. Soc. Am. J. 58. 687– 695.

  • Elek B., 2009. A talajok szerves folyadék visszatartó- és folyadékvezető-képessége. Doktori (PhD) értekezés. Keszthely.

  • Fagerlund, F., Illangeskare, T. H. & Niemi, A., 2007. Nonaqueous-phase liquid infiltration and immobilization in heterogenous media: 1. Experimental methods and two-layered reference case. Vadose Zone Journal. 6. 471–482.

  • Falta, R. W. et al., 1992. Numerical modelling of steam injection for the removal of nonaqueous phase liquids from the subsurface. 1. Numerical formulation. Water Resources Research. 28. 443–449.

  • Farkas Cs. et al., 2009. A talajvízmérleg klímaérzékenységének vizsgálata mészlepedékes cser-nozjom talajokon. Agrokémia és Talajtan. 58. 197–212.

  • Ferrand, L. A. et al., 1986. Dual gamma attenuation for the determination of porous media saturation with respect to three fluids. Water Resources Research. 22. (12) 1657–1663.

  • Ferrand L. A., Milly, P. C. D. & Pinder, G. F., 1989. Experimetnal determination of three-fluid saturation profiles in porous media. Journal of Contaminant Hydrology. 4. 373-395.

  • Ferré, Ty. P. A. et al., 2005. Hydrogeophysical methods at the laboratory scale. In: Hydro-geophysics (Eds.: Rubin, Y. & Hubbard, S. S.). Water Sci. Technology. 50. 441–463.

  • Fine, P. & Yaron, B., 1993. Outdoor experiments on enhanced volatilization by venting of kerosene component from soil. Journal of Contaminant Hydrology. 12. 355–374.

  • Fleury, M. et al., 1999. Intermediate wettability by chemical treatment. Journal of Petroleum Sciences and Engineering. 24. 123–130.

  • Fodor N. & Rajkai K., 2004. Talajfizikai tulajdonságok becslése és alkalmazásuk modellekben. Agrokémia és Talajtan. 53. 225–238.

  • Fodor N. & Rajkai K., 2005. Számítógépes program a talajok fizikai és vízgazdálkodási jellem-zőinek egyéb talajjellemzőkből történő számítására (TALAJTANonc 1.0). Agrokémia és Talajtan. 54. 25–40.

  • Forsyth, P. A., 1988. Simulation of nonaqueous phase groundwater contamination. Advanced Water Resources. 11. 74–83.

  • Glass, R. J., Conrad, S. H. & Peplinki, W., 2000. Gravity-destabilized nonwetting phase invasion in macroheterogenous porous media: Experimental observation in invasion dynamics and scale analysis. Water Resources Research. 36. 3121–3137.

  • Grimaz, S. et al., 2007. Predictive evaluation of the extent of the surface spreading for the case of accidental spillage of oil on ground. Selected Paper IcheaP-8. AIDIC Conference Series. 8. 151–160.

  • Hammervold, W. L. et al., 1998. Capillary pressure scanning curves by the micropore membrane technique. Journal of Petroleum Sciences and Engineering. 20. 253–258.

  • Hernádi H., 2005. A talajok olajvisszatartó-képességét meghatározó tulajdonságok vizsgálata. Szakdolgozat. Keszthely.

  • Hernádi H., Makó A. & Tóth B., 2012. A talajok olajvisszatartó képességének becslési lehető-ségei. In: Makó A., Hernádi H. (szerk.): Kőolajszármazékok a talajban: talajfizikai kutatások. Pannon Egyetem, Veszprém. CD. ISBN 978-615-5044-60-1. p.154-213.

  • Hernádi H. & Makó A., 2010. Szénhidrogén származékokkal szennyezett talajok olajvisszatartóképességének becslése pedotranszfer függvényekkel. In: Mérnökgeológia-kőzetmechanika. 87–98. Műegyetem Kiadó. Budapest.

  • Hernádi H. & Makó A., 2011. A talaj olajvisszatartó-képességének becslése különböző módszerekkel. Talajvédelem. Különszám. 363–371.

  • Hernádi, H. et al., 2011. The NAPL retention of mineral mixture series containing different clay minerals. Commun. Soil Sci. Plant Anal. (Megjelenés alatt)

  • Hofstee, C., Dane, J. H. & Hill, W. E., 1997. Three-fluid retention in porous media involving water, PCE and air. Journal of Contaminant Hydrology. 25. 235–247.

  • Huntley, D. & Beckett, G. D., 2002. Evaluating hydrocarbon removal from source zones and its effect on dissolved plume longevity and magnitude. American Petroleum Institute Publications. No. 4715. Washington, DC.

  • Hwang, S. I. et al., 2006. Effects of fractional wettability on capillary pressure-saturation-relative permeability relations of two-fluid systems. Advances in Water Researches. 29. (2) 212–226.

  • Illangeskare, T. H. et al., 1995. Experimental study of movement and distribution of dense organic contaminants in heterogenous aquifers. Journal of Contaminant Hydrology. 20. 1–25.

  • Imhoff, P. et al., 2002. Evolving interface between clean and nonaqueous phase liquid (NAPL)-contaminated regions in two-dimensional porous media. Water Resources Research. 38. 1093.

  • İshakoglu, A. & Baytaş, A. F., 2005. The influence of contact angle on capillary pressure-saturation relations in a porous medium including various liquids. International Journal of Engineering Science. 43. 744–755.

  • Jennings, A. A., 1987. Critical chemical reaction rates for multicomponent ground water contamination models. Water Resources Research. 23. 1775–1784.

  • Kechavarzi, C., Soga, K. & Wiart, P., 2000. Multispectral image analysis method to determine dynamic fluid saturation distribution in two-dimensional three-fluid phase flow laboratory experiments. Journal of Contaminant Hydrology. 46. 265–293.

  • Keller, J. M. & Simons, C. S., 2005. The influence of selected liquid and soil properties on the propagation of spills over flat permeable surfaces. U.S. Department of Energy. Richland, Washington.

  • Kemper, W. D. & Rosenau, R. C., 1986. Aggregate stability and size distribution. In: Methods of Soil Analysis. Part 1 (Ed.: Klute, A.). 2nd ed. Agronomy Monograph. 9. 425–442. ASA and SSSA. Madison, WI.

  • Kessler, A. & Rubin, H., 1987. Relationships between water infiltration and oil spill migration in sandy soils. Journal of Hydrology. 91. 187–204.

  • Kokkedee, J. A. & Boutkan, V. K., 1993. Towards measurement of capillary pressure and relative permeability at representative wettability. In: European Symposium on Improved Oil Recovery. Moscow, 27–29 October 1993.

  • Kueper, B. H. & Frind, E. O., 1991. Two-phase flow in heterogenous porous media: a model development. Water Resources Research. 27. 1049–1057.

  • Lenhard, R. J., 1992. Measurement and modelling of three-phase saturation-pressure hysteresis. Journal of Contaminant Hydrology. 9. 243–269.

  • Lenhard, R. J. & Parker, J. C., 1987. Measurement and prediction of saturation-pressure relations in three phase porous media systems. Journal of Contaminant Hydrology. 1. 407–424.

  • Lenhard, R. J. & Parker, J. C., 1988. Experimental validation of the theory of extending two-phase saturation–pressure relations to three fluid phase systems for monotonic drainage paths. Water Resources Research. 24. 373–380.

  • Lenhard, R. J. et al., 1988. Measurement and simulation of one-dimensional transient three-phase flow for monotonic liquid drainage. Water Resources Research. 24. 853–863.

  • Leverett, M. C., 1941. Capillary behavior in porous solids. Transactions of the Society of Petroleum Engineers. American Institute of Mechanical Engineers. 142. 152–169.

  • Leverett, M. C. & Lewis, W. B., 1941. Steady flow of gas-oil-water mixtures through unconsolidated sands. Trans Society of Petroleum Engineering America, Institute of Mining Engineering. 142. 107–116.

  • Lin, C., Pinder, G. F. & Wood, E. F., 1982. Water and Trichloroethylene as Immiscible Fluids in Porous Media. Princeton Univ. Water Resources Report. 83-WR-2. Princeton, New Jersey.

  • Lin, H. S. et al., 1999. Effects of soil morphology on hydraulic properties: II. Hydraulic pedotransfer functions. Soil Sci. Soc. Am. J. 63. 955–961.

  • Liu, H. H. & Dane, J. H., 1995. Improved computational procedure for retention relations of immiscible fluids using pressure cells. Soil Sci. Soc. Am. J. 59. 1520–1524.

  • Liu, Y. P. et al., 1998. Direct estimation of air-oil and oil-water capillary pressure and permeability realations from multi-step outflow experiments. Journal of Contaminant Hydrology. 32. 223–245.

  • Longeron, D., Hammervold, W. & Skjaeveland, S., 1995. Water-oil capillary pressure and wettability measurements using micropore membrane technique. In: Proc. Int. Meeting on Petroleum Engineering. SPE Paper 30006. Beijing, PR. China.

  • Mace, R. E. & Wilson, J. L., 1992. Clay and immiscible organic liquids. In: Transport and Remediation of Subsurface Contaminants (Eds.: Sabatini, D. A. & Knox, R. C.). 17. 205– 216.

  • Maidment, D. R., 1993. Handbook of Hydrology. McGraw-Hill, Inc. New York.

  • Makó A., 1995. A talaj szilárd fázisa és a szerves folyadékok kölcsönhatásai. Kandidátusi értekezés. Keszthely.

  • Makó, A., 2002. Measuring and estimating the pressure-saturation curves on undisturbed soil samples using water and NAPL. Agrokémia és Talajtan. 51. 27–36.

  • Makó, A., 2005. Measuring the two-phase capillary pressure-saturation curves of soil samples saturated with nonpolar liquids. Commun. Soil Sci. Plant Anal. 36. 439–453.

  • Makó A. & Elek B., 2005. Talajok kapilláris nyomás-telítettség görbéinek mérése és becslése olaj/levegő és víz/levegő rendszerekben. In: III. Erdei Ferenc Tudományos Konferencia kiadványa, Kecskemét. 2005. augusztus 23–24. 757–767.

  • Makó, A. & Elek, B., 2006. Comparison of soil extraction isotherms of soil samples saturated with nonpolar liquids. Water, Air and Soil Pollution. 6. 331–342.

  • Makó A. & Hernádi H., 2012. Kőolajszármazékok a talajban: Talajfizikai kutatások. In: Monográfia. Pannon Egyetem. Veszprém. CD Kiadvány. ISBN 978-615-5044-60-1.

  • Makó A. & Marczali Zs., 1999. A talajok szerves folyadékokra vonatkozó folyadék-visszatartó képességének laboratóriumi mérése. In: XIII. Országos Környezetvédelmi Konferencia és Szakkiállítás, Siófok, 1999. szeptember 14–16.

  • Makó A. & Máté F., 1991. Szerves folyadékok kapilláris emelkedése a talajban. Agrokémia és Talajtan. 40. 182–193.

  • Makó A. & Máté F., 1992. Szerves folyadékok beszivárgásának vizsgálata talajoszlopokon. Agrokémia és Talajtan. 41. 214–226.

  • Makó A., Tóth B. & Rajkai K., 2007. A talajok vízgazdálkodási tulajdonságainak földminősítési célú becslése. In: Földminősítés a XXI. században! Földminőség, földértékelés és földhasználati információ a környezetbarát gazdálkodás versenyképességének javításáért. Keszthely, 2007. november 22–23. 4550. MTA Talajtani és Agrokémiai Kutatóintézet. Budapest.

  • Makó A. et al., 2004a. Különböző mechanikai összetételű és aggregáltságú talajok szerves folyadék-visszatartó képességgének mérése. Talajtani Vándorgyűlés. Kecskemét. 2004. augusztus 24–26.

  • Makó A. et al., 2004b. Talajminták szerves folyadék-visszatartási izotermáinak meghatározása. In: Talajtani Vándorgyűlés. Kecskemét, 2004. augusztus 24–26.

  • Makó, A. et al., 2005. Estimating soil water retention characteristics from the soil taxonomic classification and mapping informations: consideration of humus categories. Cereal Research Communications. 34. 199–201.

  • McDowell, C. J. & Powers, S. E., 2003. Mechanisms affecting the infiltration and distribution of ethanol-blended gasoline in the vadose zone. Environmental Science & Technology. 37. 1803–1810.

  • McWorther, D. B., 1983. Distribution of Perchloroethylene and Water in Porous Media under Static Equilibrium. Report to Resource Consultants, Inc. Fort Collins, Colorado.

  • Mayer, A. S. & Miller, C. T., 1992. The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids. Journal of Contaminant Hydrology. 11. 189213.

  • Miller, C. T. et al., 1997. Multiphase flow and transport modelling in heterogenous porous media: Challenges and approaches. Advances in Water Resources. 21. 77–120.

  • Morow, N. R., 1976. Capillary pressure correlations for uniformly wetted porous media. Journal of Canadian Petroleum Technology. 15. 4969.

  • Moseley, W. A. & Dhir, V. K., 1996. Capillary pressure–saturation relations in porous media including the effect of wettability. Journal of Hydrology. 178. 3353.

  • Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research. 12. 513–522.

  • Nambi, I. M. & Powers, S. E., 2000. NAPL dissolution in heterogeneous systems: an experimental investigation in a simple heterogeneous system. Journal of Contaminant Hydrology. 44. 161–184.

  • Nemes, A., 2003. Multi-scale pedotransfer functions for Hungarian soils. Doctoral thesis. Wageningen.

  • O’Carroll, D. M., Bradford, S. A. & Abriola, L. M., 2004. Infiltration of PCE in a system containing spatial wettability variations. Journal of Contaminant Hydrology. 73. 39–63.

  • Oostrom, M., Dane, J. H. & Wietsma, T. W., 2005. Removal of carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water table reduction. Vadose Zone Journal. 4. 1170–1182.

  • Oostrom, M., Dane, J. H. & Wietsma, T. W., 2007. A review of multidimensional, multifluid, intermediate-scale experiments: Flow behavior, saturation imaging and tracer detection and quantification. Vadose Zone Journal. 6. 610–637.

  • Oostrom, M. et al., 1998. Single-source gamma radiation for improved calibration and measurements in porous media systems. Soil Science. 163. 646–656.

  • Oostrom, M. et al., 1999. Movement and remediation of trichloroethylene in saturated, heterogenous porous medium. 1. Spill behavior and initial dissolution. Journal of Contaminant Hydrology. 37. 159–178.

  • Pachepsky, Y. A. & Rawls, W. J. (Eds.), 2004. Development of Pedotransfer Functions in Soil Hydrology. Developments in Soil Science. Elsevier. Amsterdam.

  • Padget, P. K. & Hayden, N. J., 1999. Mobilization of residual tetrachloroetylene during alcohol flushing of clay-containing porous media. Journal of Contaminant Hydrology. 40. 285–296.

  • Parker, J. C. & Lenhard, R. J., 1987. A model of hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations. Water Resources Research. 23. 21872196.

  • Rajkai K., 1988. A talaj víztartó képessége és különböző talajtulajdonságok összefüggésének vizsgálata. Agrokémia és Talajtan. 36–37. 15–30.

  • Rajkai K., 2004. A víz mennyisége, eloszlása és áramlása a talajban. MTA Talajtani és Agrokémiai Kutatóintézet. Budapest.

  • Rajkai K. & Kabos S., 1999. A talaj víztartóképesség-függvény (pF-görbe) talajtulajdonságok alapján történő becslésének továbbfejlesztése. Agrokémia és Talajtan. 48. 15–32.

  • Rubin, H., Narkis, N. & Carberry, J., 1998. Soil and Aquifer Pollution. Springer-Verlag. Berlin–Heidelberg.

  • Salehzadeh, A. & Demond, A. H., 1999. Pressure cell for measuring capillary pressure relationships of contaminated sands. ASCE J. Environmental Engineering. 125. (4) 385–388.

  • Schnürer, J. & Roswall, T., 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology. 43. 1256–1261.

  • Schwille, F., 1967. Petroleum contamination of the subsoil – a hydrological problem. In: The Joint Problems of the Oil and Water Industries. The Institute of Petroleum. London. UK.

  • Schiegg, H. O., 1984. Considerations on water, oil, and air in porous media. Water Science and Technology. 17. 467476.

  • Schiegg, H. O., 1990. Laboratory Setup and Results of Experiments on Two-dimensional Multiphase Flow in Porous Media. Tech. Rep. PNL-7453. Pacific Northwest Laboratory. Richland, Washington.

  • Sleep, B. E., 1995. A method of characteristic model for equation at state compositional simulation of organic compounds in groundwater. Journal Cont. Hydrology. 17. 189212.

  • Sleep, B. E. & Sykes, J. F., 1989. Modelling the transport of organics in variably saturated media. Water Resources Research. 25. 8192.

  • Slobod, R. L., Chambers, A. & Prehn, W. L., 1951. Use of centrifuge for determining connate water, residual oil and capillary pressure curves of small core samples. In: Transactions of the American Institute of Mining Engineers. 127–134.

  • Smith, J. E. & Gillham, R. W., 1994. The effect of concentration dependent surface tension on unsaturated flow: Pressure head based formulation and numerical model. Water Resources Research. 30. 343–354.

  • Somody G. L., 2011. A talajok szerves folyadék-visszatartó képességének mérését befolyásoló tényezők vizsgálata. Szakdolgozat. Keszthely.

  • Steffy, D. A., Barry, D. A. & Johnston, C. D., 1997. Improved scaling technique for two-phase pressure-saturation relationships. Journal of Contaminant Hydrology. 28. 207–225.

  • Tóth B., 2011. Jellegzetes hazai talajok víztartó képességének számítása és jellemzése talajtérképi információk alapján. PhD dolgozat. Keszthely.

  • Tóth, B. et al., 2006. Use of soil water retention capacity and hydraulic conductivity estimation in the preparation of soil water management maps. Agrokémia és Talajtan. 55. 49–58.

  • Tuck, D. M., Bierck, B. R. & Jaffé, P. R., 1998. Synchrotron radiation measurement of multiphase fluid saturation in porous media: experimental technique and error analysis. Journal of Contaminant Hydrology. 31. 231–256.

  • Van Dam, J. C., Stricker, J. N. M. & Droogers, P., 1992. Inverse method for determining soil hydraulic properties from one-step outflow experiments. Soil Sci. Soc. Am. J. 56. 1042–1050.

  • van Geel, P. J. & Roy, S. D., 2002. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship. Journal Cont. Hydrology. 58. 79110.

  • van Geel, P. J. & Sykes, J. F., 1994a. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand. 1. Laboratory experiment and image analysis techniques. Journal of Contaminant Hydrology. 17. 125.

  • van Geel, P. J. & Sykes, J. F., 1994b. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand. 2. Comparison of laboratory and model results. Journal of Contaminant Hydrology. 17. 2653.

  • van Genuchten, M. T., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44. 892989.

  • Várallyay Gy. et al., 1979. A pF-görbék matematikai leírása. Agrokémia és Talajtan. 28. 15–38.

  • Vavra, C. L., Kaldi, J. G. & Sneider, R. M., 1992. Geological applications of capillary pressure: a review. The American Association of Petroleum Geologists Bulletin. 76. 840–850.

  • Weaver, J. L. et al., 1994. The Hydrocarbon Spill Screening Model (HSSM). 1. US EPA. EPA/600/R-94/039a.

  • Wipfer, E. L. et al., 2004. Infitration and redistribution of LNAPL into unsaturated layered porous media. Journal of Contaminant Hydrology. 71. 47–66.

  • Wösten, J. H. M., Pachepsky, Y. A. & Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology. 251. 123–150.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 7 0 0
Jul 2022 4 0 0
Aug 2022 7 0 0
Sep 2022 1 0 0
Oct 2022 3 0 1
Nov 2022 4 0 0
Dec 2022 0 0 0