View More View Less
  • 1 Pannon Egyetem, Georgikon Kar Keszthely Hungary
  • | 2 Talajtani Osztály MTA Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet 1022 Budapest Herman Ottó út 15 Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00
  • Ács F., Horváth Á. & Breuer H., 2008. A talaj szerepe az időjárás alakulásában. Agrokémia és Talajtan. 57. 225–238.

    Breuer H , 'A talaj szerepe az időjárás alakulásában ' (2008 ) 57 Agrokémia és Talajtan : 225 -238.

    • Search Google Scholar
  • Aislabie, J. & Lloyd-Jones, G., 1995. A review of bacterial degradation of pesticides. Aust. J. Soil Res. 33. 925–942.

    Lloyd-Jones G , 'A review of bacterial degradation of pesticides ' (1995 ) 33 Aust. J. Soil Res. : 925 -942.

    • Search Google Scholar
  • Albergaria, J. T., Alvim-Ferraz, M. C. M. & Delerue-Matos, C., 2012. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapor extraction. J. Env. Man. 104. 195–201.

    Delerue-Matos C , 'Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapor extraction ' (2012 ) 104 J. Env. Man. : 195 -201.

    • Search Google Scholar
  • Ball, B. C., 1981a. Modelling of soil pores as tubes using gas permeabilities, gas diffusivities and water release. J. Soil Sci. 32. 465–481.

    Ball B C , 'Modelling of soil pores as tubes using gas permeabilities, gas diffusivities and water release ' (1981 ) 32 J. Soil Sci. : 465 -481.

    • Search Google Scholar
  • Ball, B. C., 1981b. Pore characteristics of soils from two cultivation experiments as shown by gas diffusivities and permeabilities and air-filled porosities. J. Soil Sci. 32. 483–498.

    Ball B C , 'Pore characteristics of soils from two cultivation experiments as shown by gas diffusivities and permeabilities and air-filled porosities ' (1981 ) 32 J. Soil Sci. : 483 -498.

    • Search Google Scholar
  • Ball, B. C. et al., 1997a. The influence of gas transport and porosity on methane oxidation in soils. J. Geophys. Res. 102. 23301–23308.

    Ball B C , 'The influence of gas transport and porosity on methane oxidation in soils ' (1997 ) 102 J. Geophys. Res. : 23301 -23308.

    • Search Google Scholar
  • Ball, B. C. et al., 1997b. The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. J. Geophys. Res. 102. 23309–23318.

    Ball B C , 'The influence of soil gas transport properties on methane oxidation in a selection of northern European soils ' (1997 ) 102 J. Geophys. Res. : 23309 -23318.

    • Search Google Scholar
  • Buka Á. & Éber N., 2008. Konvekció égen, földben, vízben és folyadékkristályokban. Fizikai Szemle. 58. 359–361.

    Éber N , 'Konvekció égen, földben, vízben és folyadékkristályokban ' (2008 ) 58 Fizikai Szemle : 359 -361.

    • Search Google Scholar
  • Campbell, G. S., 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117. 311–314.

    Campbell G S , 'A simple method for determining unsaturated conductivity from moisture retention data ' (1974 ) 117 Soil Sci. : 311 -314.

    • Search Google Scholar
  • Carman, P. C., 1956. Flow of Gases Through Porous Media. Academic Press. New York.

    Carman P C , '', in Flow of Gases Through Porous Media , (1956 ) -.

  • Chamindu, D. T. K. K. et al., 2011. Density-corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone Journal. 10. 226–238.

    Chamindu D T K K , 'Density-corrected models for gas diffusivity and air permeability in unsaturated soil ' (2011 ) 10 Vadose Zone Journal : 226 -238.

    • Search Google Scholar
  • Chen, W. et al., 2011. Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biol. 17. 2803–2816.

    Chen W , 'Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability ' (2011 ) 17 Global Change Biol. : 2803 -2816.

    • Search Google Scholar
  • Conklin, A. R., 2005. Introduction to Soil Chemistry. Analysis and Instrumentation. John Wiley & Sons. New Jersey.

    Conklin A R , '', in Introduction to Soil Chemistry. Analysis and Instrumentation , (2005 ) -.

  • Corey, A. T., 1986. Air permeability. In: Methods of Soil Analysis. Part 1. (Ed.: Klute, A.). 2nd ed. 1121–1136. ASA & SSSA. Madison.

    Corey A T , '', in Methods of Soil Analysis. Part 1 , (1986 ) -.

  • Czinkota I., 2005. Műszeres analitika a talajtani vizsgálatokban. Kézirat. Budapest.

    Czinkota I , '', in Műszeres analitika a talajtani vizsgálatokban , (2005 ) -.

  • Csitári G. & Somody G., 2012. A kőolaj és a kőolajszármazékok kémiai és mikrobiológiai degradációja. In: Kőolajszármazékok a talajban: Talajfizikai kutatások (Szerk.: Makó A. & Hernádi H.). 278–319. Pannon Egyetem. Keszthely.

    Somody G , '', in Kőolajszármazékok a talajban: Talajfizikai kutatások , (2012 ) -.

  • Di Gléria J., Klimes-Szmik A. & Dvoracsek M., 1957. Talajfizika és talajkolloidika. Akadémiai Kiadó. Budapest.

    Dvoracsek M , '', in Talajfizika és talajkolloidika , (1957 ) -.

  • Drew, M. C. & Lynch, J. M., 1980. Soil anaerobiosis, micro-organisms and root function. Annual Review of Phytopathology. 18. 37–66.

    Lynch J M , 'Soil anaerobiosis, micro-organisms and root function ' (1980 ) 18 Annual Review of Phytopathology : 37 -66.

    • Search Google Scholar
  • Dunai A. & Makó A., 2011. Talajok folyadékvezető képességének összehasonlító vizsgálata vizes és nem vizes rendszerekben. In: Talajvédelem különszám. Talajaink a változó természeti és társadalmi hatások között (Szerk.: Farsang A. & Ladányi Zs.). 331–337. Talajvédelmi Alapítvány.

    Makó A , '', in Talajvédelem különszám. Talajaink a változó természeti és társadalmi hatások között , (2011 ) -.

  • Fish, A. N. & Koppi, A. J., 1994. The use of a simple field air permeameter as a rapid indicator of functional soil pore space. Geoderma. 63. 255–264.

    Koppi A J , 'The use of a simple field air permeameter as a rapid indicator of functional soil pore space ' (1994 ) 63 Geoderma. : 255 -264.

    • Search Google Scholar
  • Gamliel, A. & Abdul, A. S., 1993. Numerical investigations of optimal well spacing and the effect of screen length and surface sealing on gas flow toward an extraction well. J. Contam. Hydrol. 12. 171–191.

    Abdul A S , 'Numerical investigations of optimal well spacing and the effect of screen length and surface sealing on gas flow toward an extraction well ' (1993 ) 12 J. Contam. Hydrol. : 171 -191.

    • Search Google Scholar
  • Gerstl, Z., Mingelgrin, U. & Yaron, B., 1977. Behavior of Vapam (metham-sodium) and methylisothiocyanate (MIT) in soils. Soil Sci. Soc. Am. J. 41. 545–548.

    Yaron B , 'Behavior of Vapam (metham-sodium) and methylisothiocyanate (MIT) in soils ' (1977 ) 41 Soil Sci. Soc. Am. J. : 545 -548.

    • Search Google Scholar
  • Gliñski, J. & Stêpniewski, W., 1985. Soil Aeration and its Role for Plants. CRC Press. Boca Raton, Florida.

    Stêpniewski W , '', in Soil Aeration and its Role for Plants , (1985 ) -.

  • Groenevelt, P. H., Kay, B. D. & Grant, C. D., 1984. Physical assessment of a soil with respect to rooting potential. Geoderma. 34. 101–114.

    Grant C D , 'Physical assessment of a soil with respect to rooting potential ' (1984 ) 34 Geoderma : 101 -114.

    • Search Google Scholar
  • Hamamoto, S. et al., 2009. Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils. Vadose Zone J. 8. 986–995.

    Hamamoto S , 'Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils ' (2009 ) 8 Vadose Zone J. : 986 -995.

    • Search Google Scholar
  • Hamamoto, S. et al., 2011. Extreme compaction effects on gas transport parameters and estimated climate gas exchange for a landfill final cover soil. ASCE. J. Geotech. Geoenv. Eng. 137. 653–662.

    Hamamoto S , 'Extreme compaction effects on gas transport parameters and estimated climate gas exchange for a landfill final cover soil ' (2011 ) 137 ASCE. J. Geotech. Geoenv. Eng. : 653 -662.

    • Search Google Scholar
  • Hutchinson, G. L. & Livingston, G. P., 2002. Soil-atmosphere gas exchange. Introduction. In: Methods of Soil Analysis Part 4. (Eds.: Dane, J. H. & Topp, G. C.). 1159–1160. SSSA. Madison.

    Livingston G P , '', in Methods of Soil Analysis Part 4 , (2002 ) -.

  • Iversen, B. V. et al., 2001a. Air and water permeability in differently textured soils at two measurement scales. Soil Sci. 166. 643–659.

    Iversen B V , 'Air and water permeability in differently textured soils at two measurement scales ' (2001 ) 166 Soil Sci. : 643 -659.

    • Search Google Scholar
  • Iversen, B. V. et al., 2001b. In-situ, on-site and laboratory measurements of soil air permeability. Boundary conditions and measurement scale. Soil Sci. 166. 97–106.

    Iversen B V , 'In-situ, on-site and laboratory measurements of soil air permeability. Boundary conditions and measurement scale ' (2001 ) 166 Soil Sci. : 97 -106.

    • Search Google Scholar
  • Iversen, B. V. et al., 2003. Field application of a portable air permeameter to characterize spatial variability in air and water permeability. Vadose Zone J. 2. 618–626.

    Iversen B V , 'Field application of a portable air permeameter to characterize spatial variability in air and water permeability ' (2003 ) 2 Vadose Zone J : 618 -626.

    • Search Google Scholar
  • Jalbert, M. & Dane, J. H., 2003. A handheld device for intrusive and nonintrusive field measurements of air permeability. Vadose Zone J. 2. 611–617.

    Dane J H , 'A handheld device for intrusive and nonintrusive field measurements of air permeability ' (2003 ) 2 Vadose Zone J : 611 -617.

    • Search Google Scholar
  • Juca, J. F. T. & Maciel, F. J., 2006. Gas permeability of a compacted soil used in a landfill cover layer. Geotech. Spec. Publ. 147. (2) 1535–1546.

    Maciel F J , 'Gas permeability of a compacted soil used in a landfill cover layer ' (2006 ) 147 Geotech. Spec. Publ. : 1535 -1546.

    • Search Google Scholar
  • Jury, W. H. & Horton, R., 2004. Soil Physics. 6th ed. John Wiley & Sons. Hoboken.

    Horton R , '', in Soil Physics , (2004 ) -.

  • Kamiya, K., Bakrie, R. & Honjo, Y., 2006. A new method for the measurement of air permeability coefficient of unsaturated soil. Geotech. Spec. Publ. 147. (2) 1741–1752.

    Honjo Y , 'A new method for the measurement of air permeability coefficient of unsaturated soil ' (2006 ) 147 Geotech. Spec. Publ. : 1741 -1752.

    • Search Google Scholar
  • Kawamoto, K. et al., 2006a. Gas transport parameters in the vadose zone: gas diffusivity in field and lysimeter soil profiles. Vadose Zone J. 5. 1194–1204.

    Kawamoto K , 'Gas transport parameters in the vadose zone: gas diffusivity in field and lysimeter soil profiles ' (2006 ) 5 Vadose Zone J : 1194 -1204.

    • Search Google Scholar
  • Kawamoto, K. et al., 2006b. Gas transport parameters in the vadose zone: Development and tests of power-law models for air permeability. Vadose Zone J. 5. 1205–1215.

    Kawamoto K , 'Gas transport parameters in the vadose zone: Development and tests of power-law models for air permeability ' (2006 ) 5 Vadose Zone J : 1205 -1215.

    • Search Google Scholar
  • Kemenesy E., 1972. Földművelés - Talajerőgazdálkodás. Akadémiai Kiadó. Budapest.

    Kemenesy E , '', in Földművelés - Talajerőgazdálkodás , (1972 ) -.

  • Kessler, A. & Rubin, H., 1987. Relationships between water infiltration and oil spill migration in sandy soils. J. Hydrology. 91. 187–204.

    Rubin H , 'Relationships between water infiltration and oil spill migration in sandy soils ' (1987 ) 91 J. Hydrology : 187 -204.

    • Search Google Scholar
  • Kirkegaard, J. A. & Matthiessen, J. N., 2004. Developing and refining the biofumigation concept. Agroindustria. 3. 233–239.

    Matthiessen J N , 'Developing and refining the biofumigation concept ' (2004 ) 3 Agroindustria : 233 -239.

    • Search Google Scholar
  • Kozeny, J., 1927. Über kapillare Leitung des Wassers im Boden. Sitzungsberichte der Akademie der Wissenschaften in Wien. 136. 271–306.

    Kozeny J , 'Über kapillare Leitung des Wassers im Boden ' (1927 ) 136 Sitzungsberichte der Akademie der Wissenschaften in Wien : 271 -306.

    • Search Google Scholar
  • Lazzeri, L. & Manici, L. M., 2001. Allelopathic effect of glucosinolate-containing plant green manure on Pythium sp. and total fungal population in soil. Hortscience. 36. 1283–1289.

    Manici L M , 'Allelopathic effect of glucosinolate-containing plant green manure on Pythium sp. and total fungal population in soil ' (2001 ) 36 Hortscience : 1283 -1289.

    • Search Google Scholar
  • Loll, P. et al., 1999. Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling. Wat. Resour. Res. 35. 2387–2400.

    Loll P , 'Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling ' (1999 ) 35 Wat. Resour. Res. : 2387 -2400.

    • Search Google Scholar
  • Makó A., 1995. Szerves folyadékokkal telített talajok hidraulikus vezetőképessége. II. A becslés lehetőségei. Agrokémia és Talajtan. 44. 203–220.

    Makó A , 'Szerves folyadékokkal telített talajok hidraulikus vezetőképessége. II. A becslés lehetőségei ' (1995 ) 44 Agrokémia és Talajtan : 203 -220.

    • Search Google Scholar
  • Makó, A., 1998. Hydraulic conductivity of differently structured soils permeated with NAPLs. Fourth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe. September 15–17, 1998. Warsaw, Poland.

    Makó A , '', in Fourth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe , (1998 ) -.

  • Makó A., Dunai A. & Barna Gy., 2012. A talajok olajvezető képessége. In: Kőolajszármazékok a talajban: Talajfizikai kutatások (Szerk.: Makó A. & Hernádi H.). 225–260. Pannon Egyetem. Keszthely.

    Barna Gy , '', in Kőolajszármazékok a talajban: Talajfizikai kutatások , (2012 ) -.

  • Makó, A. et al., 2009. Comparison of nonaqueous phase liquids' conductivity and air permeability of different soils. Commun. Soil Sci. Plant Anal. 40. (1) 787–799.

    Makó A , 'Comparison of nonaqueous phase liquids' conductivity and air permeability of different soils ' (2009 ) 40 Commun. Soil Sci. Plant Anal. : 787 -799.

    • Search Google Scholar
  • Matthiessen, J. N. & Shackleton, M. A., 2005. Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Manag. Sci. 61. 1043–1051.

    Shackleton M A , 'Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates ' (2005 ) 61 Pest Manag. Sci. : 1043 -1051.

    • Search Google Scholar
  • Mohr, D. H. & Merz, P. H., 1995. Application of a 2D air flow model to soil vapor extraction and bioventing case studies. Ground Water. 33. 433–444.

    Merz P H , 'Application of a 2D air flow model to soil vapor extraction and bioventing case studies ' (1995 ) 33 Ground Water : 433 -444.

    • Search Google Scholar
  • Møldrup, P. et al., 1998. Gas permeability in unsaturated soil. Measurements and predictive model. Soil Sci. 163. 180–189.

    Møldrup P , 'Gas permeability in unsaturated soil. Measurements and predictive model ' (1998 ) 163 Soil Sci. : 180 -189.

    • Search Google Scholar
  • Møldrup, P. et al., 2001. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65. 613–623.

    Møldrup P , 'Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases ' (2001 ) 65 Soil Sci. Soc. Am. J. : 613 -623.

    • Search Google Scholar
  • Møldrup, P. et al., 2003. Air permeability in undisturbed volcanic ash soils: Predictive model test and soil structure fingerprint. Soil Sci. Soc. Am. J. 67. 32–40.

    Møldrup P , 'Air permeability in undisturbed volcanic ash soils: Predictive model test and soil structure fingerprint ' (2003 ) 67 Soil Sci. Soc. Am. J. : 32 -40.

    • Search Google Scholar
  • Namkoong, W., Park, J-S. & Vandergheynst, J. S., 2004. Effect of gas velocity and influent concentration on biofiltration of gasoline off-gas from soil vapor extraction. Chemosphere. 57. (7) 721–730.

    Vandergheynst J S , 'Effect of gas velocity and influent concentration on biofiltration of gasoline off-gas from soil vapor extraction ' (2004 ) 57 Chemosphere : 721 -730.

    • Search Google Scholar
  • Nazaroff, W. W., 1992. Radon transport from soil to air. Rev. Geophys. 30. 137–160.

    Nazaroff W W , 'Radon transport from soil to air ' (1992 ) 30 Rev. Geophys. : 137 -160.

  • Norsworthy, J. K. & Meehan, J. T., 2005. Herbicidal activity of eight isothiocyanates on Texas panicurn (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53. 515–520.

    Meehan J T , 'Herbicidal activity of eight isothiocyanates on Texas panicurn (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia) ' (2005 ) 53 Weed Sci. : 515 -520.

    • Search Google Scholar
  • Nyíri L. (szerk.), 1993. Földműveléstan. Mezőgazdasági Kiadó. Budapest.

    Nyíri L szerk , '', in Földműveléstan , (1993 ) -.

  • Petersen, J. et al., 2001. Weed suppression by release of isothiocyanates from turniprape mulch. Agron. J. 93. 37–43.

    Petersen J , 'Weed suppression by release of isothiocyanates from turniprape mulch ' (2001 ) 93 Agron. J. : 37 -43.

    • Search Google Scholar
  • Phillips, R. E. & Kirkham, D., 1962. Soil compaction in the field - and corn growth. Agron. J. 54. 29–34.

    Kirkham D , 'Soil compaction in the field - and corn growth ' (1962 ) 54 Agron. J. : 29 -34.

  • Poulsen, T. G. & Møldrup, P., 2007. Air permeability of compost as related to bulk density and volumetric air content. Waste Man. Res. 25. 343–351.

    Møldrup P , 'Air permeability of compost as related to bulk density and volumetric air content ' (2007 ) 25 Waste Man. Res. : 343 -351.

    • Search Google Scholar
  • Poulsen, T. G. et al., 1998. Gas permeability and diffusivity in undisturbed soil: SVE implications Gas permeability and diffusivity in undisturbed soil: SVE implications. J. Environ. Eng. 12. 979–986.

    Poulsen T G , 'Gas permeability and diffusivity in undisturbed soil: SVE implications Gas permeability and diffusivity in undisturbed soil: SVE implications ' (1998 ) 12 J. Environ. Eng. : 979 -986.

    • Search Google Scholar
  • Poulsen, T. G. et al., 1999. Predicting soil-water and soil-air transport properties and their effects on soil-vapor extraction efficiency. Ground Water Monit. Rem. 19. 61–70.

    Poulsen T G , 'Predicting soil-water and soil-air transport properties and their effects on soil-vapor extraction efficiency ' (1999 ) 19 Ground Water Monit. Rem. : 61 -70.

    • Search Google Scholar
  • Poulsen, T. G. et al., 2001. Spatial and temporal dynamics of air permeability in a constructed field. Soil Sci. 166. 153–162.

    Poulsen T G , 'Spatial and temporal dynamics of air permeability in a constructed field ' (2001 ) 166 Soil Sci. : 153 -162.

    • Search Google Scholar
  • Poulsen, T. G. et al., 2003. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using statespace analysis. Soil Sci. 168. 311–320.

    Poulsen T G , 'Estimating saturated hydraulic conductivity and air permeability from soil physical properties using statespace analysis ' (2003 ) 168 Soil Sci. : 311 -320.

    • Search Google Scholar
  • Riley, W. J. et al., 1996. The effects of steady winds on radon-222 entry from soil into houses. Atmos. Environ. 30. 1167–1176.

    Riley W J , 'The effects of steady winds on radon-222 entry from soil into houses ' (1996 ) 30 Atmos. Environ. : 1167 -1176.

    • Search Google Scholar
  • Rolston, D. E. & Møldrup, P., 2011. Gas transport in soils. Chapter 8. In: Handbook of Soil Sciences. Properties and Processes (Eds.: Huang, P. M., Li, Y. & Summer, M. E.). 2nd ed. CRC Press. Boca Raton, Florida.

    Møldrup P , '', in Handbook of Soil Sciences. Properties and Processes , (2011 ) -.

  • Sanchez-Giron, V., Andreu, E. & Hernanz, J. L., 1998. Response of five types of soil to simulated compaction in the form of confined uniaxial compression tests. Soil Till. Res. 48. 37–50.

    Hernanz J L , 'Response of five types of soil to simulated compaction in the form of confined uniaxial compression tests ' (1998 ) 48 Soil Till. Res. : 37 -50.

    • Search Google Scholar
  • Scanlon, B. R., Nicot, J. P. & Massmann, J. W., 2002. Soil gas movement in unsaturated systems. In: Soil Physics Companion (Ed.: Warwick, A. W.). 297–341. CRC Press. Boca Raton, Florida.

    Massmann J W , '', in Soil Physics Companion , (2002 ) -.

  • Schjønning, P. et al., 1999. Turnover of organic matter in differently textured soils. I. Physical characteristics of structurally disturbed and intact soils. Geoderma. 89. 177–198.

    Schjønning P , 'Turnover of organic matter in differently textured soils. I. Physical characteristics of structurally disturbed and intact soils ' (1999 ) 89 Geoderma : 177 -198.

    • Search Google Scholar
  • Smith, B. J. & Kirkegaard, J. A., 2002. In vitro inhibition of soil microorganisms by 2- phenylethyl isothiocyanate. Plant Pathol. 51. 585–593.

    Kirkegaard J A , 'In vitro inhibition of soil microorganisms by 2- phenylethyl isothiocyanate ' (2002 ) 51 Plant Pathol. : 585 -593.

    • Search Google Scholar
  • Stefanovits P., Filep Gy. & Füleky Gy. (szerk.), 1999. Talajtan. Mezőgazda Kiadó. Budapest.

    Füleky Gy szerk , '', in Talajtan , (1999 ) -.

  • Stêpniewski, W., Sobczuk, H. & Widomski, M., 2011. Diffusion in soils. In: Encyclopedia of Agrophysics (Eds.: Gliñski, J., Horabik, J. & Lipiec, J.). 214–220. Springer. Dordrecht.

    Widomski M , '', in Encyclopedia of Agrophysics , (2011 ) -.

  • Suett, D. L., Jukes, A. A. & Parekh, N. R., 1996. Non-specific influence of pH on microbial adaptation and insecticide efficacy in previously-treated field soils. 22 ref. European Commission workshop on accelerated degradation of soil-applied pesticides. Soil Biol. Biochem. 28. 1783–1790.

    Parekh N R , 'Non-specific influence of pH on microbial adaptation and insecticide efficacy in previously-treated field soils. 22 ref. European Commission workshop on accelerated degradation of soil-applied pesticides ' (1996 ) 28 Soil Biol. Biochem. : 1783 -1790.

    • Search Google Scholar
  • Szalóki S., 1989. A növények vízigénye, vízhasznosítása és öntözővíz-szükséglete. In: Az öntözés gyakorlati kézikönyve (Szerk.: Szalai Gy.) 100–154. Mezőgazdasági Kiadó. Budapest.

    Szalóki S , '', in Az öntözés gyakorlati kézikönyve , (1989 ) -.

  • Szelényi F., 1954. Laboratóriumi vizsgálati módszer a talajok levegő- és vízgazdálkodási adottságainak meghatározására. Agrokémia és Talajtan. 3. 235–252.

    Szelényi F , 'Laboratóriumi vizsgálati módszer a talajok levegő- és vízgazdálkodási adottságainak meghatározására ' (1954 ) 3 Agrokémia és Talajtan : 235 -252.

    • Search Google Scholar
  • Testa, S. M. & Winegardner, D. L., 1991. Restoration of Petroleum-contaminated Aquifers. Lewis Publishers. Chelsea, Michigan.

    Winegardner D L , '', in Restoration of Petroleum-contaminated Aquifers , (1991 ) -.

  • Tóth E. et al., 2009. A művelés hatása a talaj szén-dioxid kibocsátására. I. Laboratóriumi módszertan tesztelése bolygatatlan talajoszlopokon. Agrokémia és Talajtan. 58. 215–226.

    Tóth E , 'A művelés hatása a talaj szén-dioxid kibocsátására. I. Laboratóriumi módszertan tesztelése bolygatatlan talajoszlopokon ' (2009 ) 58 Agrokémia és Talajtan : 215 -226.

    • Search Google Scholar
  • Van Groenewoud, H., 1968. Methods and apparatus for measuring air permeability of the soil. Soil Sci. 106. 275–279.

    Groenewoud H , 'Methods and apparatus for measuring air permeability of the soil ' (1968 ) 106 Soil Sci. : 275 -279.

    • Search Google Scholar
  • Varga-Haszonits Z. et al., 2008. A talajok vízellátottságának hatása a gazdasági növények vízigényének alakulására. Agrokémia és Talajtan. 57. 7–20.

    Varga-Haszonits Z , 'A talajok vízellátottságának hatása a gazdasági növények vízigényének alakulására ' (2008 ) 57 Agrokémia és Talajtan : 7 -20.

    • Search Google Scholar
  • Warton, B. & Matthiessen, J., 2000. The BCPC Conference — Pests & Diseases 2000. British Crop Protection Council. Brighton.

    Matthiessen J , '', in The BCPC Conference — Pests & Diseases 2000 , (2000 ) -.

  • Warton, B., Matthiessen, J. N. & Shackleton, M. A., 2001. Glucosinolate content and isothiocyanate evolution - Two measures of the biofumigation potential of plants. J. Agr. Food Chem. 49. 5244–5250.

    Shackleton M A , 'Glucosinolate content and isothiocyanate evolution - Two measures of the biofumigation potential of plants ' (2001 ) 49 J. Agr. Food Chem. : 5244 -5250.

    • Search Google Scholar
  • Weaver, J. W., Charbeneau, R. J. & Lien, B. K., 1994a. A screening model for nonaqueous phase liquid transport in the vadose zone using Green.Ampt and kinetic wave theory. Water Resources Research. 30. 93–105.

    Lien B K , 'A screening model for nonaqueous phase liquid transport in the vadose zone using Green.Ampt and kinetic wave theory ' (1994 ) 30 Water Resources Research : 93 -105.

    • Search Google Scholar
  • Weaver, J. W. et al., 1994b. The hydrocarbon spill screening model (HSSM). 1. US EPA. EPA/600/R-94/039a.

  • Yaron, B., Calvet, R. & Prost, R., 1996. Soil Pollution. Proccesses and Dynamics. Springer-Verlag. Berlin-Heidelberg.

    Prost R , '', in Soil Pollution. Proccesses and Dynamics , (1996 ) -.

  • Zur, B., 1996. Wetted soil volume as a design objective in trickle irrigation. Irrigation Science. 16. 101–105.

    Zur B , 'Wetted soil volume as a design objective in trickle irrigation ' (1996 ) 16 Irrigation Science : 101 -105.

    • Search Google Scholar

Senior editors

Editor(s)-in-Chief: Rajkai, Kálmán

Technical Editor(s): Koós, Sándor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrártudományi Központ, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Szent István Egyetem, Georgikon Kar, Keszthely)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Szent István Egyetem, Növénytermesztési Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Michéli, Erika (Szent István Egyetem, Mezőgazdaság- és Környezettudományi Kar, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Szili-Kovács, Tibor (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tóth, Zoltán (Szent István Egyetem, Georgikon Kar, Keszthely)

 

International Advisory Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)

 

           International Editorial Board

  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Ole Wendroth (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)

Rajkai Kálmán
ATK Talajtani és Agrokémiai Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Publication
Programme
2021 Volume 70
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 1 0 0
Apr 2021 1 0 0
May 2021 1 0 0
Jun 2021 2 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0