Author:
Tibor Filep MTA Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet 1022 Budapest Herman Ottó út 15 Hungary

Search for other papers by Tibor Filep in
Current site
Google Scholar
PubMed
Close
Restricted access
  • Aiken, G. R. & Gillam, A. H., 1989. Determination of molecular weights of humic substances by colligative property measurements. In: Humic Substances II. In Search of Structure. (Eds.: Hayes, M. H. B. et al.) 515–544. Wiley, Chichester.

    Gillam A H , '', in Humic Substances II. In Search of Structure , (1989 ) -.

  • Aleksandrova, L. N., 1960. The use of sodium pyrophosphate for separating free humus substances and their organo-mineral compounds from soil. Pochvovednie. 2. 90–97.

    Aleksandrova L N , 'The use of sodium pyrophosphate for separating free humus substances and their organo-mineral compounds from soil ' (1960 ) 2 Pochvovednie : 90 -97 .

    • Search Google Scholar
  • Arnarson, T. S. & Keil, R. G., 2001. Organic-mineral interactions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy. Org. Geochem. 32. 1401–1415.

    Keil R G , 'Organic-mineral interactions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy ' (2001 ) 32 Org. Geochem. : 1401 -1415 .

    • Search Google Scholar
  • Atkins, P & De Paula, J., 2006. Physical Chemistry for the Life Sciences. Oxford University Press. Oxford, UK.

    Paula J , '', in Physical Chemistry for the Life Sciences , (2006 ) -.

  • Aufdenkampe, A. et al., 2001. Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limn Ocean, 46. 1921–1935.

    Aufdenkampe A , 'Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin ' (2001 ) 46 Limn Ocean : 1921 -1935 .

    • Search Google Scholar
  • Baldock, J. A. & Nelson, P. N., 1999. Soil organic matter. In: Handbook of Soil Science. (Ed.: Sumner, M. E.) B25–B84. CRC Press. Boca Raton, Florida.

    Nelson P N , '', in Handbook of Soil Science , (1999 ) -.

  • Bronick, C. J. & Lal, R., 2005. Soil structure and management: a review. Geoderma, 124. 3–22.

    Lal R , 'Soil structure and management: a review ' (2005 ) 124 Geoderma : 3 -22 .

  • Casas, A. et al., 2012. Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS analysis and experimental validation. Industrial Crops and Products. 37. 155–163.

    Casas A , 'Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS analysis and experimental validation ' (2012 ) 37 Industrial Crops and Products : 155 -163 .

    • Search Google Scholar
  • Chen, X. et al., 2006. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer. 47. 2839–2848.

    Chen X , 'X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions ' (2006 ) 47 Polymer. : 2839 -2848 .

    • Search Google Scholar
  • Clapp, C. E. et al., 2005 Chemistry of soil matter. In: Chemical Processes in Soils. (Eds.: Tabatabai, M. A. & Sparks, D. L.) 1–150. Soil Sci. Soc. Am. Book Series. Madison, WI.

    Clapp C E , '', in Chemical Processes in Soils , (2005 ) -.

  • Dorée, C., 1947. The Methods of Cellulose Chemistry. Chapman & Hall. London.

    Dorée C , '', in The Methods of Cellulose Chemistry , (1947 ) -.

  • Dubach, P. & Mehta, N. C., 1963. The chemistry of soil humic substances. Soils and Fertilizers. 26. 293–300.

    Mehta N C , 'The chemistry of soil humic substances ' (1963 ) 26 Soils and Fertilizers : 293 -300 .

    • Search Google Scholar
  • Edwards, A. P. & Bremner, J. M., 1967. Microaggregates in soils. J. Soil Sci. 18. 64–73.

    Bremner J M , 'Microaggregates in soils ' (1967 ) 18 J. Soil Sci. : 64 -73 .

  • Egli, M & Sarkhel, S., 2007. Lone pair-aromatic interactions: to stabilize or not to stabilize. Acc. Chem. Res. 40. 197–205.

    Sarkhel S , 'Lone pair-aromatic interactions: to stabilize or not to stabilize ' (2007 ) 40 Acc. Chem. Res. : 197 -205 .

    • Search Google Scholar
  • Ershova, O. et al., 2012. Effect of urea on cellulose degradation under conditions of alkaline pulping. Cellulose. 19. 2195–2204.

    Ershova O , 'Effect of urea on cellulose degradation under conditions of alkaline pulping ' (2012 ) 19 Cellulose : 2195 -2204 .

    • Search Google Scholar
  • Feng, L. & Chen, Z. I., 2008. Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids. 142. 1–5.

    Chen Z I , 'Research progress on dissolution and functional modification of cellulose in ionic liquids ' (2008 ) 142 Journal of Molecular Liquids : 1 -5 .

    • Search Google Scholar
  • Filep Gy., 1988. Talajkémia. Akadémiai Kiadó. Budapest.

    Filep Gy , '', in Talajkémia , (1988 ) -.

  • Flaig, W. & Beutelspacher, H., 1968. Investigations of humic acids with the analytical ultracentrifuge. In: Isotopes and Radiation in Soil Organic Matter Studies. 23–30. IAEA. Vienna.

    Beutelspacher H , '', in Isotopes and Radiation in Soil Organic Matter Studies , (1968 ) -.

  • Flory, P. J., 1942. Thermodynamics of high polymer solutions. J. Chem. Phys. 10. 51–62.

    Flory P J , 'Thermodynamics of high polymer solutions ' (1942 ) 10 J. Chem. Phys. : 51 -62 .

    • Search Google Scholar
  • Fort, D. A. et al., 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem. 9. 63–69.

    Fort D A , 'Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride ' (2007 ) 9 Green Chem. : 63 -69 .

    • Search Google Scholar
  • Ghosh, K. & Schnitzer, M., 1980. Macromolecular structure of humic substances. Soil Science. 129. 266–276.

    Schnitzer M , 'Macromolecular structure of humic substances ' (1980 ) 129 Soil Science : 266 -276 .

    • Search Google Scholar
  • Greenland, D. J., 1971. Interactions between humic and fulvic acids and clays. Soil Sci. 111. 34–41.

    Greenland D J , 'Interactions between humic and fulvic acids and clays ' (1971 ) 111 Soil Sci. : 34 -41 .

    • Search Google Scholar
  • Grulke, E. A., 1999. Solubility parameter values. In: Polymer Handbook. Vol. 7. (Eds.: Brandrup, J., Immergut, E. H. & Grulke, E. A.), 4th ed. 675–714. Wiley. New York.

    Grulke E A , 'Solubility parameter values ' (1999 ) 7 Polymer Handbook : 675 -714 .

  • Gu, B. et al., 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci. Technol. 28. 38–46.

    Gu B , 'Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models ' (1994 ) 28 Environ Sci. Technol. : 38 -46 .

    • Search Google Scholar
  • Hansen, C. M., 1967. The three dimensional solubility parameter — key to paint component affinities: I. Solvents, plasticizers, polymers and resins. Journal of Paint Technology. 39. 104.

    Hansen C M , 'The three dimensional solubility parameter — key to paint component affinities: I. Solvents, plasticizers, polymers and resins ' (1967 ) 39 Journal of Paint Technology : 104 -.

    • Search Google Scholar
  • Hayes, M. H. B., 1985. Extraction of humic substances from soils. In: Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization. (Ed.: MacCarthy, P.) 329–362. Wiley. New York.

    Hayes M H B , '', in Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization , (1985 ) -.

  • Hayes, M. H. B., 2006. Solvent systems for the isolation of organic components from soils. Soil Sci. Soc. Am. J. 70. 986–994.

    Hayes M H B , 'Solvent systems for the isolation of organic components from soils ' (2006 ) 70 Soil Sci. Soc. Am. J. : 986 -994 .

    • Search Google Scholar
  • Haynes, C. A. & Norde, W., 1995. Structures and stabilities of adsorbed proteins. Journal of Colloid and Interface Science. 169. 313–328.

    Norde W , 'Structures and stabilities of adsorbed proteins ' (1995 ) 169 Journal of Colloid and Interface Science : 313 -328 .

    • Search Google Scholar
  • Hildebrand, J. & Scott, R. L., 1950. Solubility of Nonelectrolytes. 3rd ed. Reinhold. New York.

    Scott R L , '', in Solubility of Nonelectrolytes , (1950 ) -.

  • Huggins, M. L., 1942. Some properties of solutions of long-chain compounds. J. Phys. Chem. 46. 151–158.

    Huggins M L , 'Some properties of solutions of long-chain compounds ' (1942 ) 46 J. Phys. Chem. : 151 -158 .

    • Search Google Scholar
  • Jones, D. L. et al., 2005. Dissolved organic nitrogen uptake by plants — an important N uptake pathway? Soil Biol. Biochem. 37. 413–423.

    Jones D L , 'Dissolved organic nitrogen uptake by plants — an important N uptake pathway? ' (2005 ) 37 Soil Biol. Biochem. : 413 -423 .

    • Search Google Scholar
  • Kauzmann, W., 1959. Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry. 14. 1–63.

    Kauzmann W , 'Some factors in the interpretation of protein denaturation ' (1959 ) 14 Advances in Protein Chemistry : 1 -63 .

    • Search Google Scholar
  • Keeney, D. R. & Bremner, J. M., 1966. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. Journal. 58. 498–503.

    Bremner J M , 'Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability ' (1966 ) 58 Agron. Journal. : 498 -503 .

    • Search Google Scholar
  • Kilpeläinen, I. et al., 2007. Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55. 9142–9148.

    Kilpeläinen I , 'Dissolution of wood in ionic liquids ' (2007 ) 55 J. Agric. Food Chem. : 9142 -9148 .

    • Search Google Scholar
  • Kleber, M., Sollins, P. & Sutton, R., 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry. 85. 9–24.

    Sutton R , 'A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces ' (2007 ) 85 Biogeochemistry : 9 -24 .

    • Search Google Scholar
  • Klemm, D. et al., 1998. Comprehensive Cellulose Chemistry. Wiley-VCH. Weinheim.

    Klemm D , '', in Comprehensive Cellulose Chemistry , (1998 ) -.

  • Kögel-Knabner, I., De Leeuw, J. W. & Hatcher, P. G., 1992. Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biopolymers. Science of the Total Environment. 117–118. 175–185.

    Hatcher P G , 'Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biopolymers ' (1992 ) 117–118 Science of the Total Environment : 175 -185 .

    • Search Google Scholar
  • Landgraf, D., Leinweber, P. & Makeschin, F., 2006. Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. Journal of Plant Nutrition and Soil Science. 169. 76–82.

    Makeschin F , 'Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils ' (2006 ) 169 Journal of Plant Nutrition and Soil Science : 76 -82 .

    • Search Google Scholar
  • Lützow, M. V. et al., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. European Journal of Soil Science. 57. 426–445.

    Lützow M V , 'Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review ' (2006 ) 57 European Journal of Soil Science : 426 -445 .

    • Search Google Scholar
  • McGill, W. B. & Cole, C. V., 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma. 26. 267–286.

    Cole C V , 'Comparative aspects of cycling of organic C, N, S and P through soil organic matter ' (1981 ) 26 Geoderma : 267 -286 .

    • Search Google Scholar
  • Mikutta, R. et al., 2007. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochimica et Cosmochimica Acta. 71. 2569–2590.

    Mikutta R , 'Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms ' (2007 ) 71 Geochimica et Cosmochimica Acta : 2569 -2590 .

    • Search Google Scholar
  • Miller-Chou, B. A. & Koenig, J. L., 2003. A review of polymer dissolution. Prog. Polym. Sci. 28. 1223–1270.

    Koenig J L , 'A review of polymer dissolution ' (2003 ) 28 Prog. Polym. Sci. : 1223 -1270 .

    • Search Google Scholar
  • Mott, C. J. B., 1981. Anion and ligand exchange. In: The Chemistry of Soil Processes. (Eds.: Greenland, D. J. & Hayes, M. H. B.) 179–221. John Wiley & Sons. New York.

    Mott C J B , '', in The Chemistry of Soil Processes , (1981 ) -.

  • Nakanishi, K., Sakiyama, T. & Imamura, K., 2001. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. Journal of Bioscience and Bioengineering. 91. 233–244.

    Imamura K , 'On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon ' (2001 ) 91 Journal of Bioscience and Bioengineering : 233 -244 .

    • Search Google Scholar
  • Omoike, A. & Chorover, J., 2006. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta. 70. 827–838.

    Chorover J , 'Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis ' (2006 ) 70 Geochimica et Cosmochimica Acta : 827 -838 .

    • Search Google Scholar
  • Picollo, A. et al., 1998. Atrazine interactions with soil humic substances of different molecular structure. J. Environ. Qual. 27. 1324–1333.

    Picollo A , 'Atrazine interactions with soil humic substances of different molecular structure ' (1998 ) 27 J. Environ. Qual. : 1324 -1333 .

    • Search Google Scholar
  • Piccolo, A. et al., 2001. Molecular sizes and association forces of humic substances in soil solution. In: Humic Substances and Chemical Contaminants. (Eds.: Clapp, C. E. et al.) 89–118. Soil Sci. Soc. Am. Madison, WI.

    Piccolo A , '', in Humic Substances and Chemical Contaminants , (2001 ) -.

  • Piret, E. L. et al., 1960. Some physico-chemical properties of peat humic acids. Sci. Proc. R. Dublin Soc. A1: 69–79.

    Piret E L , 'Some physico-chemical properties of peat humic acids ' (1960 ) A1 Sci. Proc. R. Dublin Soc. : 69 -79 .

    • Search Google Scholar
  • Rékási M., 2007. Talajok sav-bázis érzékenységének értékelése. PhD értekezés. Debrecen.

    Rékási M , '', in Talajok sav-bázis érzékenységének értékelése , (2007 ) -.

  • Remington, S. J. et al., 2005. zFP538, a yellow fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Biochemistry. 44. 202–212.

    Remington S J , 'zFP538, a yellow fluorescent protein from Zoanthus, contains a novel three-ring chromophore ' (2005 ) 44 Biochemistry : 202 -212 .

    • Search Google Scholar
  • Rice, J. A., 2001. Humin. Soil Sci. 166. 848–857.

    Rice J A , '' (2001 ) 166 Humin. Soil Sci. : 848 -857 .

  • Roach, P., Farrar, D. & Perry, C. C., 2005. Interpretation of protein adsorption: surfaceinduced conformational changes. J. American Chemical Society. 127. 8168–8173.

    Perry C C , 'Interpretation of protein adsorption: surfaceinduced conformational changes ' (2005 ) 127 J. American Chemical Society : 8168 -8173 .

    • Search Google Scholar
  • Ruan, D. et al., 2004. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol. Biosci. 4. 1105–1112.

    Ruan D , 'Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution ' (2004 ) 4 Macromol. Biosci. : 1105 -1112 .

    • Search Google Scholar
  • Schulten, H. R. & Schnitzer, M., 1993. A state-of-the-art structural concept for humic substances. Naturwissenschaften. 80. 29–30.

    Schnitzer M , 'A state-of-the-art structural concept for humic substances ' (1993 ) 80 Naturwissenschaften : 29 -30 .

    • Search Google Scholar
  • Schulze, D. G. et al., 1993. Significance of organic matter in determining soil colors. In: Soil Color (Eds.: Bigham, J. M. & Ciolkosz, E. J.) SSSA Special Publication 31. 71–90.

    Schulze D G , '', in Soil Color , (1993 ) -.

  • Shen, Y. H., 1999. Sorption of natural dissolved organic matter on soil. Chemosphere. 38. 1505–1515.

    Shen Y H , 'Sorption of natural dissolved organic matter on soil ' (1999 ) 38 Chemosphere : 1505 -1515 .

    • Search Google Scholar
  • Simpson, A. J. et al., 2002. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften. 89. 84–88.

    Simpson A J , 'Molecular structures and associations of humic substances in the terrestrial environment ' (2002 ) 89 Naturwissenschaften : 84 -88 .

    • Search Google Scholar
  • Stevenson, F. J., 1982. Humus Chemistry: Genesis, Composition, Reactions. Wiley. New York.

    Stevenson F J , '', in Humus Chemistry: Genesis, Composition, Reactions , (1982 ) -.

  • Swift, R. S., 1999. Macromolecular properties of soil humic substances: fact, fiction, and opinion. Soil Science. 164. 790–802.

    Swift R S , 'Macromolecular properties of soil humic substances: fact, fiction, and opinion ' (1999 ) 164 Soil Science : 790 -802 .

    • Search Google Scholar
  • Török L., 1955. A humuszanyagok kioldása kolloidkémiai megvilágításban és a trágyahumusz kioldásának vizsgálata. Agrokémia és Talajtan. 4. 57–70.

    Török L , 'A humuszanyagok kioldása kolloidkémiai megvilágításban és a trágyahumusz kioldásának vizsgálata ' (1955 ) 4 Agrokémia és Talajtan. : 57 -70 .

    • Search Google Scholar
  • Von Wandruszka, R., 1998. The micellar model of humic acid: evidence from pyrene fluorescence measurements. Soil Sci. 163. 921–930.

    Wandruszka R , 'The micellar model of humic acid: evidence from pyrene fluorescence measurements ' (1998 ) 163 Soil Sci. : 921 -930 .

    • Search Google Scholar
  • Wang, X. C. & Lee, C., 1990. The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments. Geochim. Cosmochim. Acta. 54. 2759–2774.

    Lee C , 'The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments ' (1990 ) 54 Geochim. Cosmochim. Acta. : 2759 -2774 .

    • Search Google Scholar
  • Warner, R. C., 1942. The kinetics of the hydrolysis of urea and of arginine. J. Biol. Chem. 142. 705–723.

    Warner R C , 'The kinetics of the hydrolysis of urea and of arginine ' (1942 ) 142 J. Biol. Chem. : 705 -723 .

    • Search Google Scholar
  • Wershaw, R. L., 1999. Molecular aggregation of humic substances. Soil Science. 164. 803–813.

    Wershaw R L , 'Molecular aggregation of humic substances ' (1999 ) 164 Soil Science : 803 -813 .

    • Search Google Scholar
  • Wershaw, R. L., Llaguno, E. C. & Leenheer, J. A., 1996. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR. Coll Surf A: Physicochem Eng Aspects. 108. 213–223.

    Leenheer J A , 'Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR ' (1996 ) 108 Coll Surf A: Physicochem Eng Aspects : 213 -223 .

    • Search Google Scholar
  • Wild, A., 1995. Soils and the Environment: An Introduction. Cambridge University Press. Cambridge, England.

    Wild A , '', in Soils and the Environment: An Introduction , (1995 ) -.

  • Wood, J. L., 1974. pH-controlled hydrogen-bonding. Biochem. J. 143. 775–777.

    Wood J L , 'pH-controlled hydrogen-bonding ' (1974 ) 143 Biochem. J. : 775 -777 .

  • Zsolnay, A., 2003. Dissolved organic matter: artefacts, definitions, and functions. Geoderma. 113. 187–209.

    Zsolnay A , 'Dissolved organic matter: artefacts, definitions, and functions ' (2003 ) 113 Geoderma : 187 -209 .

    • Search Google Scholar
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 78 0 0
Jun 2024 60 0 0
Jul 2024 36 0 0
Aug 2024 21 0 0
Sep 2024 83 0 0
Oct 2024 366 0 0
Nov 2024 20 0 0