Authors:
Krisztina Végh

Search for other papers by Krisztina Végh in
Current site
Google Scholar
PubMed
Close
,
J. Csillag Hungarian Academy of Sciences Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research Budapest Hungary

Search for other papers by J. Csillag in
Current site
Google Scholar
PubMed
Close
,
A. Lukács Hungarian Academy of Sciences Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research Budapest Hungary

Search for other papers by A. Lukács in
Current site
Google Scholar
PubMed
Close
,
B Panwar CCS Haryana Agricultural University Department of Soil Science Hisar India

Search for other papers by B Panwar in
Current site
Google Scholar
PubMed
Close
, and
Gy. Füleky Szent István University Department of Soil Science and Agrochemistry, Faculty of Environmental and Agricultural Sciences Gödöllő Hungary

Search for other papers by Gy. Füleky in
Current site
Google Scholar
PubMed
Close
Restricted access

Potassium uptake is the result of numerous simultaneous processes influencing the potassium dynamics in the rhizosphere.The presented research has focused on plant-soil interactions in the potassium supply of soil in the root environment of maize. It was assumed that: 1. roots promote the mobilization of K by the acidification of the rhizosphere soil, 2. roots increase wetting-drying cycles in their environment, and 3. soil total K content affects K release and fixation in the bulk of soil and the root environment.The promoting effect of root activity was detected on K release from soil when feldspar was added as K source to the root environment. A 2-unit reduction of soil pH multiplied K concentration in the soil solution, depending on the feldspar rate. Feldspar application significantly increased the solubility and release of potassium into the soil solution.The effect of pH reduction on the K concentration of soil solution was several magnitudes higher than that of the wetting-drying cycles both in the untreated and feldspar treated soils.Potassium uptake by maize over two generations greatly exceeded the exchangeable pool in the growing media. As a consequence of the exhaustive K uptake K release slowed down to the soil solution, as reflected in the H2O extractable K and ExK contents.Significant K fixation was detected after the K removal of maize in feldspar treated soils. On the contrary, in the treatments without plants increasing feldspar rates increased both H2O extractable K and ExK contents.One-term Langmuir equation, corrected with the originally sorbed amount of K, was fitted to measured data. The maximum amount of potassium adsorption (Kmax, mg∙kg−1) and the equilibrium constant (k) were calculated. The potassium buffering capacity was estimated at zero equilibrium concentration. Both K buffering capacity and the energy of K fixation were high for the rhizosphere soil. In rhizosphere soil samples the energy of K fixation was one magnitude higher as compared to the bulk soil and decreased substantially with feldspar addition. In soils without plants the k equilibrium constant did not change as the result of drying-wetting process only in the case of the 50% soil/feldspar mixture.In the liquid phase of the soil without feldspar application potassium concentration decreased in the one-year drying-wetting cycle, presumably it got into more strongly bounded forms in the low K status soil. In 50% feldspar enriched soil samples potassium concentration in the soil solution increased, likely as a consequence of a slow dissolution of the K content of feldspar.

  • Buzás, I. (Ed.), 1988. Manual of Soil and Agrochemical Analysis 2. (In Hungarian) Mezogazdasági Kiadó. Budapest.

    '', in Manual of Soil and Agrochemical Analysis 2 , (1988 ) -.

  • Füleky, G., 1993. Soil buffering capacity — A measure of soil resilience. Agrokémia és Talajtan. 42. 16–22.

    Füleky G. , 'Soil buffering capacity — A measure of soil resilience ' (1993 ) 42 Agrokémia és Talajtan : 16 -22 .

    • Search Google Scholar
  • Gahoonia, T. S & Nielsen, N. E., 1992. Control of pH at soil-root interface. Plant Soil. 140. 49–54.

    Nielsen N. E. , 'Control of pH at soil-root interface ' (1992 ) 140 Plant Soil : 49 -54 .

    • Search Google Scholar
  • Gregory, P. J. & Hinsinger, P., 1999. New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant and Soil. 211. 1–9.

    Hinsinger P. , 'New approaches to studying chemical and physical changes in the rhizosphere: an overview ' (1999 ) 211 Plant and Soil : 1 -9 .

    • Search Google Scholar
  • Hinsinger, P., 1998. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. In: Advances in Agronomy. (Ed.: Stewart, B. A.) Vol. 64. 225–265. Academic Press. London, U.K.

    Hinsinger P. , '', in Advances in Agronomy , (1998 ) -.

  • Karpinets, T. V. & Greenwood, D. J., 2003. Potassium dynamics. In: Handbook of Processes and Modeling in Soil-Plant System. (Eds.: Benbi, D. K. & Nieder, R.) 526–560. Haworth Press. New York.

    Greenwood D. J. , '', in Handbook of Processes and Modeling in Soil-Plant System , (2003 ) -.

  • Kuchenbuch, R., Claassen, N. & Jungk, A., 1986. Potassium availability in relation to soil moisture II. Calculations by means of a mathematical simulation model. Plant Soil. 95. 233–243.

    Jungk A. , 'Potassium availability in relation to soil moisture II. Calculations by means of a mathematical simulation model ' (1986 ) 95 Plant Soil : 233 -243 .

    • Search Google Scholar
  • Nye, P. H., 1981. Changes of pH across the rhizosphere induced by roots. Plant and Soil. 61. 7–26.

    Nye P. H. , 'Changes of pH across the rhizosphere induced by roots ' (1981 ) 61 Plant and Soil : 7 -26 .

    • Search Google Scholar
  • Ruan, L. et al., 2013. Enhanced resistance to low potassium stress in Elymus dahuricus H-PPase EdVP1 transgenic wheat. Research on Crops. 14. 395–403.

    Ruan L. , 'Enhanced resistance to low potassium stress in Elymus dahuricus H-PPase EdVP1 transgenic wheat ' (2013 ) 14 Research on Crops : 395 -403 .

    • Search Google Scholar
  • Schindler, F. V., Woodard, H. J. & Doolittle, J. J., 2005. Assessment of soil potassium sufficiency as related to quantity-intensity in montmorillonitic soils. Commun. Soil Sci. Plant Analysis. 36. 2255–2270.

    Doolittle J. J. , 'Assessment of soil potassium sufficiency as related to quantity-intensity in montmorillonitic soils ' (2005 ) 36 Commun. Soil Sci. Plant Analysis : 2255 -2270 .

    • Search Google Scholar
  • Sparks, D. L., 1987. Potassium dynamics in soils. In: Advances in Soil Sciences. (Ed.: Steward, B. A.) Vol. 6. 2–63. Springer Verlag. New York.

    Sparks D. L. , '', in Advances in Soil Sciences , (1987 ) -.

  • Sparks, D. L. & Huang, P. M., 1985. Physical chemistry of soil potassium. In: Potassium in Agriculture. (Eds.: Munson, R. D. et al.). 201–276. SSSA. Madison, Wisc.

    Huang P. M. , '', in Potassium in Agriculture , (1985 ) -.

  • Srinivasa Rao, C. H., Subba Rao, A. & Rupa, T. R., 2000. Plant mobilization of soil reserve potassium from fifteen smectite soils in relation to soil test K and mineralogy. Soil Sci. 165. 578–586.

    Rupa T. R. , 'Plant mobilization of soil reserve potassium from fifteen smectite soils in relation to soil test K and mineralogy ' (2000 ) 165 Soil Sci. : 578 -586 .

    • Search Google Scholar
  • Sutcliffe, J. F. & Baker, A., 1981. Plants and Mineral Salts. Studies in Biology. Vol. 48. Arnol Ltd. London, UK.

    Baker A. , '', in Plants and Mineral Salts , (1981 ) -.

  • Szendrei, G., 1994. Soil Mineralogy. (In Hungarian) Ecoplan. Budapest.

    Szendrei G. , '', in Soil Mineralogy , (1994 ) -.

  • Tennant, D., 1975. Test of modified line intersect method. Journal of Ecology. 63. 995–1001.

    Tennant D. , 'Test of modified line intersect method ' (1975 ) 63 Journal of Ecology : 995 -1001 .

    • Search Google Scholar
  • Végh, K. R. & Füleky, G., 2004. Potassium uptake and dynamics in rhizosphere as affected by drought. In: Proc. III. Alps-Adria Scientific Workshop, Dubrovnik, 1–6 March 2004. 363–367.

    Füleky G. , '', in Proc. III. Alps-Adria Scientific Workshop, Dubrovnik, 1–6 March 2004 , (2004 ) -.

  • Zeng, Q. P. & Brown, P. H., 2000. Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant and Soil. 221. 121–134.

    Brown P. H. , 'Soil potassium mobility and uptake by corn under differential soil moisture regimes ' (2000 ) 221 Plant and Soil : 121 -134 .

    • Search Google Scholar
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 3 18 0
Dec 2023 73 15 0
Jan 2024 40 11 0
Feb 2024 106 2 2
Mar 2024 33 1 0
Apr 2024 21 0 0
May 2024 0 0 0