Authors:
András Makó

Search for other papers by András Makó in
Current site
Google Scholar
PubMed
Close
,
K. RajkaiHungarian Academy of Sciences Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research Budapest Hungary

Search for other papers by K. Rajkai in
Current site
Google Scholar
PubMed
Close
,
H. HernádiUniversity of Pannonia Department of Crop Production and Soil Sciences, Georgikon Faculty Keszthely Hungary

Search for other papers by H. Hernádi in
Current site
Google Scholar
PubMed
Close
, and
G. HaukMOTIM Co. Ltd. Mosonmagyaróvár Hungary

Search for other papers by G. Hauk in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Results of the performed preliminary particle size determination (PSD) experiments of soils show the importance of the preparation details of the laser diffractometer method (LDM). The analysis of the effect of each preparation factor on soil PSD data calls attention to the need for working out standard instructions defining the pre-treatments and settings for the LDM instrument. Further laboratory experiments involving larger soil datasets are required for the better understanding of the effects of soil pre-treatments and settings on PSD data. There is a practical reason of substituting the time-consuming pipette method with the LDM. In case of this substitution, linkages of the LDM PSD data and other soil properties are to be established. Correlation study of the LDM and conventional PSD data could make the harmonization of newly built and historical databases possible. Finally, the introduction of the LDM technique to soil physical methodology could generate the reevaluation of existing soil physical interrelations.

  • Allen, T. A., 1990. Particle Size Measurement. 4th ed. Chapman and Hall. London.

    Allen T. A. , '', in Particle Size Measurement , (1990 ) -.

  • Balashov, E., Kren, J. & Prochazkova, B., 2010. Influence of plant residue management on microbial properties and water-stable aggregates of two agricultural soils. International Agrophysics. 24. 9–14.

    Prochazkova B. , 'Influence of plant residue management on microbial properties and water-stable aggregates of two agricultural soils ' (2010 ) 24 International Agrophysics : 9 -14 .

    • Search Google Scholar
  • Balázs, R. et al., 2012. Complex investigation of the PSD measurements pipette methods performed according to Hungarian and international standards. (In Hungarian) In: Talajtani Vándorgyulés. Miskolc, 2012. augusztus 23–25. Book of Abstracts. 19.

    Balázs R. , '', in Talajtani Vándorgyulés , (2012 ) -.

  • Barna, GY. et al., 2013. Comparative analysis of the organic liquid conductivity of soil samples treated with cationic surfactant. Georgikon for Agriculture. 18. 41–55.

    Barna Gy. , 'Comparative analysis of the organic liquid conductivity of soil samples treated with cationic surfactant ' (2013 ) 18 Georgikon for Agriculture : 41 -55 .

    • Search Google Scholar
  • Beuselinck, L. et al., 1998. Grain-size analysis laser diffractometry: Comparison with the sieve-pipette method. Catena. 32. 193–208.

    Beuselinck L. , 'Grain-size analysis laser diffractometry: Comparison with the sieve-pipette method ' (1998 ) 32 Catena : 193 -208 .

    • Search Google Scholar
  • Bieganowski, A., Ryzak, M. & Witkowska-Walczak, B., 2010. Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Miner. 45. 23–34. doi: 10.1180/claymin.2010.045.1.23

    Witkowska-Walczak B. , 'Determination of soil aggregate disintegration dynamics using laser diffraction ' (2010 ) 45 Clay Miner : 23 -34 .

    • Search Google Scholar
  • Bieganowski, A. et al., 2012. Ultrasonic stabilization of the activated sludge samples for particle size distribution measurements using laser diffraction method. In: Proc. ECOpole. DOI: 10.2429/proc.2012.6(2)062 . 6. 475–479

    Bieganowski A. , '', in Proc. ECOpole , (2012 ) -.

  • Bieganowski, A. et al., 2013. Methodological aspects of fractal dimension estimation on the basis of particle size distribution. Vadose Zone J. 12. doi: 10.2136/vzj2012.0064

  • Blott, S. J. & Pye, K., 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effect of particle shape. Sedimentology. 53. 671–685.

    Pye K. , 'Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effect of particle shape ' (2006 ) 53 Sedimentology : 671 -685 .

    • Search Google Scholar
  • Brzeziñska, M. et al., 2012. Methane production and consumption in loess soil at different slope position. Scientific World J. 2012. 1–8.

    Brzeziñska M. , 'Methane production and consumption in loess soil at different slope position ' (2012 ) 2012 Scientific World J : 1 -8 .

    • Search Google Scholar
  • Buzás, I. (Ed.), 1993. Manual of Soil and Agrochemical Analysis. (In Hungarian) INDA. Budapest.

    '', in Manual of Soil and Agrochemical Analysis , (1993 ) -.

  • Buurman, P., Pape, Th. & Muggler, C. C., 1997. Laser grain-size determination in soil genetic studies. 1. Practical problems. Soil Sci. 162. 211–218.

    Muggler C. C. , 'Laser grain-size determination in soil genetic studies. 1. Practical problems ' (1997 ) 162 Soil Sci. : 211 -218 .

    • Search Google Scholar
  • Chambers, J. M. et al., 1983. Graphical Methods for Data Analysis. Duxbury Press. Boston.

    Chambers J. M. , '', in Graphical Methods for Data Analysis , (1983 ) -.

  • Clifton, J. et al., 1999. An investigation into the efficiency of particle size separation using Stokes’ measurement. Earth Surface Processes and Landforms. 24. 725–730.

    Clifton J. , 'An investigation into the efficiency of particle size separation using Stokes’ measurement ' (1999 ) 24 Earth Surface Processes and Landforms : 725 -730 .

    • Search Google Scholar
  • Czinkota, I. et al., 2002. Adsorption of propisochlor of soils and components equation for multi-step isotherms. Chemosphere. 48. 725–731.

    Czinkota I. , 'Adsorption of propisochlor of soils and components equation for multi-step isotherms ' (2002 ) 48 Chemosphere : 725 -731 .

    • Search Google Scholar
  • deBoer, G. B. et al., 1987. Laser diffraction spectrometry: Fraunhofer versus Mie scattering. Particle & Particle Systems Characterization. 4. (1–4) 14–19.

    deBoer G. B. , 'Laser diffraction spectrometry: Fraunhofer versus Mie scattering ' (1987 ) 4 Particle & Particle Systems Characterization : 14 -19 .

    • Search Google Scholar
  • Di Stefano, C., Ferro, V. & Mirabile, S., 2010. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosystems Engineering. 106. 205–215.

    Mirabile S. , 'Comparison between grain-size analyses using laser diffraction and sedimentation methods ' (2010 ) 106 Biosystems Engineering : 205 -215 .

    • Search Google Scholar
  • Dunai, A., Makó, A. & Barna, Gy., 2013. The air permeability of soils. (In Hungarian) Agrokémia és Talajtan. 62. 415–426.

    Barna Gy. , 'The air permeability of soils ' (2013 ) 62 (In Hungarian) Agrokémia és Talajtan : 415 -426 .

    • Search Google Scholar
  • Ertli, T., Marton, A. & Földényi, R., 2004. Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere. 57. 771–779.

    Földényi R. , 'Effect of pH and the role of organic matter in the adsorption of isoproturon on soils ' (2004 ) 57 Chemosphere : 771 -779 .

    • Search Google Scholar
  • Eshel, G. et al., 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68. 736–743.

    Eshel G. , 'Critical evaluation of the use of laser diffraction for particle-size distribution analysis ' (2004 ) 68 Soil Sci. Soc. Am. J : 736 -743 .

    • Search Google Scholar
  • Farkas, Cs. et al., 2011. Estimating climate change effects on soil water balance elements of Hungarian calcic chernozem soils. Agrokémia és Talajtan. 60. Suppl. 41–56.

    Farkas C.s. , 'Estimating climate change effects on soil water balance elements of Hungarian calcic chernozem soils ' (2011 ) 60 Agrokémia és Talajtan : 41 -56 .

    • Search Google Scholar
  • Földényi, R. et al., 2010. Investigation of the particle size distribution of Hungarian soils by different methods. In: “Lithospheres, sediments and soil analysis by modern methods”. Malvern Instruments Conference, Warsaw, Poland, 10.03.2010–12.03.2010.

    Földényi R. , '', in Lithospheres, sediments and soil analysis by modern methods , (2010 ) -.

  • Gee, G. W. & Bauder, J. W., 1986. Particle-size analysis. In: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. (Ed.: Klute, A.) 2nd ed. 383–411. American Society of Agronomy. Madison, Wisc.

    Bauder J. W. , '', in Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods , (1986 ) -.

  • Genrich, D. A. & Bremner, J. M., 1972. A reevaluation of the ultrasonic vibration method of dispersing soils. Soil Sci. Soc. Amer. Proc. 36. 944–947.

    Bremner J. M. , 'A reevaluation of the ultrasonic vibration method of dispersing soils ' (1972 ) 36 Soil Sci. Soc. Amer. Proc. : 944 -947 .

    • Search Google Scholar
  • Hajnos, M. et al., 2006. Complete characterization of pore size distribution of tilled and orchard soil using water retention curve, mercury porosimetry, nitrogen adsorption, and water desorption methods. Geoderma. 135. 307–314.

    Hajnos M. , 'Complete characterization of pore size distribution of tilled and orchard soil using water retention curve, mercury porosimetry, nitrogen adsorption, and water desorption methods ' (2006 ) 135 Geoderma : 307 -314 .

    • Search Google Scholar
  • Hernádi, H. et al., 2012. Particle size analysis of soil samples pre-treated according to different standards and measured with sedimentation and optical methods. (In Hungarian) Talajvédelem. Különszám. 227–236.

    Hernádi H. , '', in Particle size analysis of soil samples pre-treated according to different standards and measured with sedimentation and optical methods , (2012 ) -.

  • Hernádi, H. et al., 2013. Nonaqueous-phase liquid retention of mineral mixture series containing different clay minerals. Commun. Soil Sci. Plant Anal. 44. 390–396.

    Hernádi H. , 'Nonaqueous-phase liquid retention of mineral mixture series containing different clay minerals ' (2013 ) 44 Commun. Soil Sci. Plant Anal. : 390 -396 .

    • Search Google Scholar
  • ISO 11277: 2009(E). International Standard. Soil quality — Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation.

    '', in International Standard , (2009 ) -.

  • Konert, M. & Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology. 44. 523–535.

    Vandenberghe J. , 'Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction ' (1997 ) 44 Sedimentology : 523 -535 .

    • Search Google Scholar
  • Kovács, B. et al., 2006. Fit method for calculating soil particle size distribution from particle density and settling time data. Agrokémia és Talajtan. 55. 295–304.

    Kovács B. , 'Fit method for calculating soil particle size distribution from particle density and settling time data ' (2006 ) 55 Agrokémia és Talajtan : 295 -304 .

    • Search Google Scholar
  • Kuráž, V. et al., 2012. Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia. Eurasian Soil Sci. 45. (3) 266–272.

    Kuráž V. , 'Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia ' (2012 ) 45 Eurasian Soil Sci. : 266 -272 .

    • Search Google Scholar
  • Loizeau, J.-L. et al., 1994. Evaluation of wide range laser diffraction grain size analyser for use with sediments. Sedimentology. 41. 353–361.

    Loizeau J.-L. , 'Evaluation of wide range laser diffraction grain size analyser for use with sediments ' (1994 ) 41 Sedimentology : 353 -361 .

    • Search Google Scholar
  • Loveland, P. J. & Whalley, W. R., 2001. Particle size analysis. In: Soil and Environmental Analysis, Physical Methods. (Eds.: Smith, K. A. & Mullins, C. E.) 281–314. Marcel Dekker Inc. New York.

    Whalley W. R. , '', in Soil and Environmental Analysis, Physical Methods , (2001 ) -.

  • Liu, T. K. et al., 1966. Comparison of clay contents determined by hydrometer and pipette methods using reduced major axis analysis. Soil Sci. Soc. Amer. Proc. 30. 665–669.

    Liu T. K. , 'Comparison of clay contents determined by hydrometer and pipette methods using reduced major axis analysis ' (1966 ) 30 Soil Sci. Soc. Amer. Proc. : 665 -669 .

    • Search Google Scholar
  • Madarász, B. et al., 2012. Examination of sample preparation methods for the laser grain size analysis of soils with high organic matter content. (In Hungarian) Agrokémia és Talajtan. 61. 381–398.

    Madarász B. , 'Examination of sample preparation methods for the laser grain size analysis of soils with high organic matter content ' (2012 ) 61 (In Hungarian) Agrokémia és Talajtan : 381 -398 .

    • Search Google Scholar
  • Makó, A. & Hernádi, H., 2010. Comparative evaluation of different pre-treatment methods applied during the PSD analysis of soils. (In Hungarian) In: Mérnökgeológia-Kozetmechanika 2010. (Eds.: TöRöK, Á. & Vásárhelyi, B.) 99–107. Muegyetemi Kiadó. Budapest.

    Hernádi H. , '', in Mérnökgeológia-Kozetmechanika , (2010 ) -.

  • Makó, A. et al., 2002. Testing the correlation between the clay content measured with different methods and some specific soil physical parameters. (In Hungarian) In: XVI. Országos Környezetvédelmi Konferencia és Szakkiállítás, Siófok, 2002. szeptember 11–13. 231–239.

    Makó A. , '', in XVI , (2002 ) -.

  • Makó, A. et al., 2009. Comparison of the NAPL conductivity and air permeability of different soils. Commun. Soil. Sci. Plant Analysis. 40. 787–799.

    Makó A. , 'Comparison of the NAPL conductivity and air permeability of different soils ' (2009 ) 40 Commun. Soil. Sci. Plant Analysis : 787 -799 .

    • Search Google Scholar
  • Makó, A. et al., 2010. Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan. 59. 29–39.

    Makó A. , 'Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions ' (2010 ) 59 Agrokémia és Talajtan : 29 -39 .

    • Search Google Scholar
  • McCave, I. N. et al., 1986. Evaluation of a laser-diffraction-size analyser for use with natural sediments. J. Sedimentol. Petrol. 56. 561–564.

    McCave I. N. , 'Evaluation of a laser-diffraction-size analyser for use with natural sediments ' (1986 ) 56 J. Sedimentol. Petrol. : 561 -564 .

    • Search Google Scholar
  • McKeague, J. A., 1978. Manual on Soil Sampling and Methods of Analysis. 2nd ed. Canadian Society of Soil Science. Ottawa.

    McKeague J. A. , '', in Manual on Soil Sampling and Methods of Analysis , (1978 ) -.

  • MSZ-08. 0205-78., 1979. Investigation of hydrophysical properties of soils. (In Hungarian) Standard. Budapest.

    '', in Investigation of hydrophysical properties of soils , (1979 ) -.

  • Oostrom, M. et al., 2003. Flow behavior and residual saturation formation of injected carbon tetrachloride in unsaturated heterogeneous porous media. Journal of Contaminant Hydrology. 64. 93–112.

    Oostrom M. , 'Flow behavior and residual saturation formation of injected carbon tetrachloride in unsaturated heterogeneous porous media ' (2003 ) 64 Journal of Contaminant Hydrology : 93 -112 .

    • Search Google Scholar
  • Rajkai, K., 2004. Quantity, Distribution and Movement of Water in Soil. (In Hungarian) PhD Thesis. RISSAC HAS. Budapest.

    Rajkai K. , '', in Quantity, Distribution and Movement of Water in Soil , (2004 ) -.

  • Ryzak, M. & Bieganowski, A., 2010. Determination of particle size distribution of soil using laser diffraction. Comparison with areometric method. International Agrophysics. 24. 177–181.

    Bieganowski A. , 'Determination of particle size distribution of soil using laser diffraction. Comparison with areometric method ' (2010 ) 24 International Agrophysics : 177 -181 .

    • Search Google Scholar
  • Ryzak, M. & Bieganowski, A., 2011. Methodological aspects of determining soil particle-size distribution using the laser-diffraction method. J. Plant Nutr. Soil Sci. 174. (4) 624–633. doi: 10.1002/jpln.201000255

    Bieganowski A. , 'Methodological aspects of determining soil particle-size distribution using the laser-diffraction method ' (2011 ) 174 J. Plant Nutr. Soil Sci. : 624 -633 .

    • Search Google Scholar
  • Ryzak, M., Walczak, R. T. & Niewczas, J., 2004. Comparison of particle size distribution in soils from laser diffraction and sedimentation methods. (In Polish). Acta Agrophysica. 4. (2) 509–518.

    Niewczas J. , 'Comparison of particle size distribution in soils from laser diffraction and sedimentation methods ' (2004 ) 4 Acta Agrophysica : 509 -518 .

    • Search Google Scholar
  • Sochan, A. et al., 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. International Agrophysics. 26. 99–102. doi: 10.2478/v10247-012-0015-9

    Sochan A. , 'Comparison of soil texture determined by two dispersion units of Mastersizer 2000 ' (2012 ) 26 International Agrophysics : 99 -102 .

    • Search Google Scholar
  • Taubner, H., Roth, B. & Tippkötter, R., 2009. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J. Plant Nutr. Soil. Sci. 172. 161–171.

    Tippkötter R. , 'Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis ' (2009 ) 172 J. Plant Nutr. Soil. Sci. : 161 -171 .

    • Search Google Scholar
  • Tombácz, E., 2002. Adsorption from electrolyte solutions. In: Adsorption: Theory, Modeling and Analysis. (Ed.: Tóth, J.) 711–742. Marcel Dekker. New York.

    Tombácz E. , '', in Adsorption: Theory, Modeling and Analysis , (2002 ) -.

  • Tóth, B. et al., 2006. Study on the estimation possibilities of soil hydraulic conductivity. Cereal Res. Commun. 34. 327–330.

    Tóth B. , 'Study on the estimation possibilities of soil hydraulic conductivity ' (2006 ) 34 Cereal Res. Commun. : 327 -330 .

    • Search Google Scholar
  • Tóth, B. et al., 2012. Water retention of salt-affected soils: quantitative estimation using soil survey information. Arid Land Research and Management. 26. (2) 103–121.

    Tóth B. , 'Water retention of salt-affected soils: quantitative estimation using soil survey information ' (2012 ) 26 Arid Land Research and Management : 103 -121 .

    • Search Google Scholar
  • Tóth, G., Makó, A. & Máté, F., 2009. Designation of local varieties in the Hungarian soil classification system: Remarks from a viewpoint of land evaluation application. Eurasian Soil Sci. 42. 1448–1453.

    Máté F. , 'Designation of local varieties in the Hungarian soil classification system: Remarks from a viewpoint of land evaluation application ' (2009 ) 42 Eurasian Soil Sci. : 1448 -1453 .

    • Search Google Scholar
  • Usowicz, B., Lipiec, J. & Usowicz, J. B., 2008. Thermal conductivity in relation to porosity and hardness to terrestrial porous media. Planetary and Space Science. 56. 438–447.

    Usowicz J. B. , 'Thermal conductivity in relation to porosity and hardness to terrestrial porous media ' (2008 ) 56 Planetary and Space Science : 438 -447 .

    • Search Google Scholar
  • Wösten, J. H. M., Pachepsky, Y. A. & Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251. 123–150.

    Rawls W. J. , 'Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics ' (2001 ) 251 J. Hydrol. : 123 -150 .

    • Search Google Scholar
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2022 9 0 0
Jan 2023 24 0 1
Feb 2023 7 1 1
Mar 2023 14 0 0
Apr 2023 0 0 0
May 2023 5 0 0
Jun 2023 0 0 0