Authors: I. Sisák and A. Benő 1
View More View Less
  • 1 University of Pannonia Georgikon Faculty Keszthely Hungary
  • | 2 University of Pannonia Georgikon Faculty H-8316 Keszthely 16 Deák F. út Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

Three centrally edited nationwide soil maps were published in Hungary between 1953 and 1988. Each of these soil maps has advantages, but serious drawbacks as well. Authors’ hypothesis was that the drawbacks of the individual soil maps are correctable with the help of other soil maps and with ancillary data. Therefore, the oldest soil map was digitized and a study was conducted for the harmonization of data on a 266 km2 area at Keszthely (near Lake Balaton) by using the CHAID classification tree method. CORINE land cover database, digital map of surface geology, digital elevation model and derived slope categories were used as ancillary data.The seven source maps contained 7–38 categories. After the intersection of all seven maps, the resulting file contained more than 50,000 polygons and nearly 14,000 category combinations. A variable — showing the probability of the category combinations in relation to the expected areas — was calculated. This was the target variable for classification by the CHAID method, using categories of the seven original maps as independent variables.0.5% of the total area was grouped into 13 less probable classes, which represent the inaccuracies of the initial maps. 99.5% of the total area was classified into 19 classes and some of them were further subdivided on the basis of the geological map. These classes were interpreted as eight WRB soil categories. The final soil map had much better spatial resolution than any of the initial soil maps, non-soil categories were interpreted as soil categories and spatial accuracy was successfully corrected with the proposed method.

  • AIR (Agrár-környezetgazdálkodási Információs Rendszer), 2013. Agro-environmental Information System. (In Hungarian). http://terkep.air.gov.hu/terkep/nyilvanos/ nyilvanos.hu

    '', in Agro-environmental Information System , (2013 ) -.

  • Cambule, A. H., Rossiter, D. G. & Stoorvogel, J. J., 2013. A methodology for digital soil mapping in poorly-accessible areas. Geoderma. 192. 341–353.

    Stoorvogel J. J. , 'A methodology for digital soil mapping in poorly-accessible areas ' (2013 ) 192 Geoderma : 341 -353.

    • Search Google Scholar
  • Chrisman, N. R., 1989. Modeling error in overlaid categorical maps. In: Accuracy of Spatial Databases. (Eds.: Goodchild, M. & Gopal, S.) 21–34. Taylor & Francis. London.

    Chrisman N. R. , '', in Accuracy of Spatial Databases , (1989 ) -.

  • FÖMI (Institute of Geodesy, Cartography and Remote Sensing), 2012a. Products (In Hungarian) http://www.fomi.hu/portal/index.php/termekeink

    '', in Products , (2012 ) -.

  • FÖMI (Institute of Geodesy, Cartography and Remote Sensing), 2012b. CORINE Land Cover 1:100 000 database. (In Hungarian) https://www.fomi.hu/corine/ clc100_index.html.

    '', in CORINE Land Cover , (2012 ) -.

  • Goodman, L. A., 1971. The analysis of multidimensional contingency tables: Stepwise procedures and direct estimation methods for building models for multiple classifications. Technometrics. 13. (1) 33–61.

    Goodman L. A. , 'The analysis of multidimensional contingency tables: Stepwise procedures and direct estimation methods for building models for multiple classifications ' (1971 ) 13 Technometrics : 33 -61.

    • Search Google Scholar
  • Grinand, C. et al., 2008. Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma. 143. (1–2) 180–190.

    Grinand C. , 'Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context ' (2008 ) 143 Geoderma : 180 -190.

    • Search Google Scholar
  • Häring, T. et al., 2012. Spatial disaggregation of complex soil map units: A decisiontree based approach in Bavarian forest soils. Geoderma. 185–186. 37–47.

    Häring T. , 'Spatial disaggregation of complex soil map units: A decisiontree based approach in Bavarian forest soils ' (2012 ) 185–186 Geoderma : 37 -47.

    • Search Google Scholar
  • Hengl, T. et al., 2007. Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma. 140. 417–427.

    Hengl T. , 'Methods to interpolate soil categorical variables from profile observations: lessons from Iran ' (2007 ) 140 Geoderma : 417 -427.

    • Search Google Scholar
  • IUSS Working Group WRB, 2007. World Reference Base for Soil Resources. First update. World Soil Resources Reports No. 103. FAO. Rome.

    '', in World Reference Base for Soil Resources , (2007 ) -.

  • Kass, G. V., 1980. An exploratory technique for investigating large quantities of categorical data. Applied Statistics. 29. (2) 119–127.

    Kass G. V. , 'An exploratory technique for investigating large quantities of categorical data ' (1980 ) 29 Applied Statistics : 119 -127.

    • Search Google Scholar
  • Kreybig, L., 1937. Soil survey, analysis and mapping methodology of the Royal Hungarian Geological Institute. (In Hungarian) M. Kir. Földtani Intézet Évkönyve. XXXI. 148–244. Budapest

    Kreybig L. , '', in Soil survey, analysis and mapping methodology of the Royal Hungarian Geological Institute , (1937 ) -.

  • McBratney, A., Mendonca Santos, M. L. & Minasny, B., 2003. On digital soil mapping. Geoderma. 117. 3–52.

    Minasny B. , 'On digital soil mapping ' (2003 ) 117 Geoderma : 3 -52.

  • Mattyasovszky, J., Görög, L. & Stefanovits, P., 1953. Agricultural soil map 1:200,000. (In Hungarian) Tervgazdasági Könyvkiadó. Budapest.

    Stefanovits P. , '', in Agricultural soil map 1:200,000 , (1953 ) -.

  • MÉM (Ministry of Agriculture and Food Industry) 1983–1988. People’s Republic of Hungary: Agro-topographical map 1:100,000 (84 map sheets 51×66 cm). (In Hungarian) MéM Országos Földügyi és Térképészeti Hivatal. Budapest.

    '', in People’s Republic of Hungary: Agro-topographical map 1:100,000 (84 map sheets 51×66 cm) , (1983 ) -.

  • MÉM NAK, 1983. Genetic soil map of Hungary, 1:200,000. (In Hungarian) Plant Protection and Agrochemistry Centre, Ministry of Agriculture and Food Industry. Budapest

    '', in Genetic soil map of Hungary, 1:200,000 , (1983 ) -.

  • MTA ATK TAKI, 2012. Agro-topographical database. (In Hungarian). Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences. Budapest. http://www.mta-taki.hu/osztalyok/gislabor/ agrotopo

    '', in Agro-topographical database , (2012 ) -.

  • Nemes, A., Pachepsky, Y. A. & Timlin, D., 2010. Toward improving estimates of field capacity from laboratory measured soil properties. In: Proc. World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 August 2010, Brisbane, Australia. 182–185.

    Timlin D. , '', in Proc. World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 August 2010, Brisbane, Australia , (2010 ) -.

  • Pásztor, L. et al., 2013. Downscaling of categorical soil maps with the aid of auxiliary spatial soil information and data mining methods. (In Hungarian) Agrokémia és Talajtan. 62. 205–218.

    Pásztor L. , 'Downscaling of categorical soil maps with the aid of auxiliary spatial soil information and data mining methods ' (2013 ) 62 Agrokémia és Talajtan : 205 -218.

    • Search Google Scholar
  • Pelikán, P. & Peregi, Zs. (Eds.), 2005. Geological map of Hungary, 1:100,000. (In Hungarian) Geological Institute of Hungary. Budapest. http://mafi-loczy.mafi.hu/ Fdt100/

    '', in Geological map of Hungary, 1:100,000 , (2005 ) -.

  • Pontius, R. G. JR. 2002. Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetric Engineering and Remote Sensing. 68. (10) 1041–1050.

    Pontius R. G. , 'Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions ' (2002 ) 68 Photogrammetric Engineering and Remote Sensing : 1041 -1050.

    • Search Google Scholar
  • Schmidt, K., Behrens, T. & Scholten, T., 2008. Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma. 146. (1) 138–146.

    Scholten T. , 'Instance selection and classification tree analysis for large spatial datasets in digital soil mapping ' (2008 ) 146 Geoderma : 138 -146.

    • Search Google Scholar
  • Scull, P. et al., 2003. Predictive soil mapping: a review. Progress in Physical Geography. 27. (2) 171–197.

    Scull P. , 'Predictive soil mapping: a review ' (2003 ) 27 Progress in Physical Geography : 171 -197.

    • Search Google Scholar
  • SISák, I. & Bámer, B., 2008. Remarks to the paper of J. Szabó, L. Pásztor and Zs. Bakacsi entitled “National Spatial Soil Information System: Demand, feasibility and construction stages. (In Hungarian) Agrokémia és Talajtan. 57. 347–354.

    Bámer B. , 'Remarks to the paper of J. Szabó, L. Pásztor and Zs. Bakacsi entitled “National Spatial Soil Information System: Demand, feasibility and construction stages ' (2008 ) 57 Agrokémia és Talajtan : 347 -354.

    • Search Google Scholar
  • Sisák, I. & Beno, A., 2012. Publishing the digitized 1:200,000 scale Agricultural soil map on the Georgikon Map-server. (In Hungarian) In: LIV. Georgikon Days, Keszthely, 11–12 October 2012. (ISBN 978-963-9639-48-5) 431–436. http://napok.georgikon.hu/cikkadatbazis-2012/cat_view/3-cikkadatbazis/4-2012/ 10-vii-szekcio-vizgazdalkodas

    Beno A. , '', in LIV. Georgikon Days, Keszthely, 11–12 October 2012 , (2012 ) -.

  • Sisák I. & Pocze, T., 2011. Harmonization of soil texture data on a sample area near Lake Balaton. (In Hungarian) Agrokémia és Talajtan. 60. 259–272.

    Pocze T. , 'Harmonization of soil texture data on a sample area near Lake Balaton ' (2011 ) 60 Agrokémia és Talajtan : 259 -272.

    • Search Google Scholar
  • Soil Atlas of Europe, 2005. European Soil Bureau Network European Commission. 128 pp. Office for Official Publications of the European Communities, L-2995 Luxembourg.

    '', in European Soil Bureau Network European Commission , (2005 ) -.

  • Sun, X. L. et al., 2011. Application of a digital soil mapping method in producing soil orders on mountain areas of Hong Kong based on legacy soil data. Pedosphere. 21. (3) 339–350.

    Sun X. L. , 'Application of a digital soil mapping method in producing soil orders on mountain areas of Hong Kong based on legacy soil data ' (2011 ) 21 Pedosphere : 339 -350.

    • Search Google Scholar
  • Tóth, B. et al., 2012. Water retention of salt affected soils: quantitative estimation using soil survey information. Arid Land Research and Management. 26. 103–121.

    Tóth B. , 'Water retention of salt affected soils: quantitative estimation using soil survey information ' (2012 ) 26 Arid Land Research and Management : 103 -121.

    • Search Google Scholar
  • Tóth, T. et al., 2001. GIS-based analysis of agrogeological factors influencing the extension of salt-affected soils in the Hungarian Plain in 1:500 000 scale. (In Hungarian) In: Papers of the Hungarian Geographical Conference, Szeged, 25–27 October 2001. (CD ROM) ISBN 936 482 544 3.

    Tóth T. , '', in Papers of the Hungarian Geographical Conference, Szeged, 25–27 October 2001 , (2001 ) -.

  • Várallyay, Gy. et al., 1979. Map of soil factors determining the agro-ecological potential of Hungary, 1:100,000 I. (In Hungarian) Agrokémia és Talajtan. 28. 363–384.

    Várallyay Gy. , 'Map of soil factors determining the agro-ecological potential of Hungary, 1:100,000 I ' (1979 ) 28 Agrokémia és Talajtan : 363 -384.

    • Search Google Scholar
  • Várallyay, Gy. et al., 1980. Map of soil factors determining the agro-ecological potential of Hungary, 1:100,000 II. (In Hungarian) Agrokémia és Talajtan. 29. 35–76.

    Várallyay Gy. , 'Map of soil factors determining the agro-ecological potential of Hungary, 1:100,000 II ' (1980 ) 29 Agrokémia és Talajtan : 35 -76.

    • Search Google Scholar

Senior editors

Editor(s)-in-Chief: Rajkai, Kálmán

Technical Editor(s): Koós, Sándor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrártudományi Központ, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Szent István Egyetem, Georgikon Kar, Keszthely)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Szent István Egyetem, Növénytermesztési Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Michéli, Erika (Szent István Egyetem, Mezőgazdaság- és Környezettudományi Kar, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Szili-Kovács, Tibor (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tóth, Zoltán (Szent István Egyetem, Georgikon Kar, Keszthely)

 

International Advisory Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)

 

           International Editorial Board

  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Ole Wendroth (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)

Rajkai Kálmán
ATK Talajtani és Agrokémiai Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Publication
Programme
2021 Volume 70
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 3 0 0
Apr 2021 1 0 1
May 2021 1 0 0
Jun 2021 0 1 1
Jul 2021 1 0 0
Aug 2021 0 0 0