Authors:
Márk Rékási MTA ATK Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Márk Rékási in
Current site
Google Scholar
PubMed
Close
and
Nikolett Uzinger MTA ATK Talajtani és Agrokémiai Intézet, Budapest

Search for other papers by Nikolett Uzinger in
Current site
Google Scholar
PubMed
Close
Restricted access

A bioszén anyagában a tápanyagok három jellemző, hasznosulási sebességüket meghatározó formában lehetnek jelen. A hamu frakcióban lévő elemek gyakorlatilag azonnal, a labilis frakcióban lévők a mineralizáció után heteken, hónapokon belül, míg a perzisztens frakcióban lévők csak évszázadok során szabadulnak fel. A frakciók aránya a bioszén előállítási körülményeitől függ, így ezek alapvetően befolyásolják a végtermék tápanyag-szolgáltató képességét.

A foszfor és a kálium mindhárom frakcióban megtalálható, így a bioszén ezen elemek közvetlen forrása lehet a talajban. A nitrogén viszont csak a labilis és a perzisztens frakcióban található meg — koncentrációja a hamuban gyakorlatilag nullának tekinthető –, így a bioszén saját N-tartalmából növénytáplálási szempontból csak a labilis frakcióban lévő vehető számításba rövidtávon. Ezt figyelembe véve a bioszén alkalmazása mellett a nitrogén más forrásból történő pótlása szüksé-ges.

A bioszén azonban nem csak közvetlenül, saját tápelem-tartalma folytán, hanem közvetetten a talajtulajdonságokra (pH, kationcsere-kapacitás, vízgazdálkodás, stb.) és a mikrobiológiai folyamatokra gyakorolt hatása révén is befolyásolja a talaj táp-anyag-szolgáltató képességét. A közvetlen és közvetett hatás a tápanyagok felvehe-tősége szempontjából gyakran ellentétes irányú. A bioszénnel bevitt elemtartalom révén a talajban mért összes mennyiség megnőhet, de a fokozottabb tápelem-megkötő képesség miatt a könnyen felvehető, vízoldható mennyiségek lecsökken-hetnek. A két hatás eredője határozza meg, hogy egy adott elem felvehetősége javul-e a talajban.

Hosszú távon azonban csakis a közvetett hatásokkal számolhatunk, így a bioszén alkalmazásánál ezeket szem előtt tartva kell mérlegelni és dönteni a felhasználásáról.

A bioszén olyan mértékű alkalmazása, hogy az a Föld klímája szempontjából befolyásoló tényezőként jelentkezzen, egyelőre meglehetősen távolinak tűnik. A talajjavítási, tápanyag-utánpótlási szerepkörben azonban érdemes a bioszénnel foglalkozni. Az intenzív növénytermesztés során a bioszénnel történő tápanyag-utánpótlás nem biztosítható, de a konvencionális trágyaszerekkel együtt alkalmazva hasznos adalékanyag lehet, mivel azok hatékonyságának fokozása mellett talajjavító hatása is érvényesülni tud. A bioszén ezáltal a mezőgazdasági termelésben hosszú távú előnyöket biztosíthat.

  • ALLEN, M. F. , 2007. Mycorrhizal fungi: highways for water and nutrient movement in arid soils. Vadose Zone Journal. 6. 291297.

  • ATKINSON, C. J., FITZGERALD J. D. & HIPPS N. A., 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil. 337. 118.

    • Search Google Scholar
    • Export Citation
  • BEESLEY, L., MORENO-JIMÉNEZ, E. & GOMEZ-EYLES, J. L., 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158. 22822287.

    • Search Google Scholar
    • Export Citation
  • BIEDERMAN, L. A. & HARPOLE, W. S., 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy. 5. 202214.

    • Search Google Scholar
    • Export Citation
  • BLACKWELL, P., KRULL, E., BUTLER, G., HERBERT, A. & SOLAIMAN, Z., 2010. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Aust. J. Soil Res. 48. 531545.

    • Search Google Scholar
    • Export Citation
  • BRIDLE, T. R. & PRITCHARD, D., 2004. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 50. 169175.

    • Search Google Scholar
    • Export Citation
  • BRUUN, E. W., HAUGGAARD-NIELSEN H., IBRAHIM, N., EGSGAARD H., AMBUS P., JENSEN P. A. & DAM-JOHANSEN K., 2011. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy. 35. 11821189.

    • Search Google Scholar
    • Export Citation
  • CAYUELA, M. L., SÁNCHEZ-MONEDERO, M. A., ROIG, A., HANLEY, K., ENDERS, A. & LEHMANN, J., 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions. Scientific Reports. 3. 1732.

    • Search Google Scholar
    • Export Citation
  • CHAN, K. Y., VAN ZWIETEN, L., MESZAROS, I., DOWNIE, A. & JOSEPH, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 45. 629634.

    • Search Google Scholar
    • Export Citation
  • CHAN, K. Y. & XU, Z., 2009. Biochar: nutrient properties and their enhancement. Chapter 5. In: Biochar for Environmental Management Science and Technology. (Eds.: LEHMANN, J. & JOSEPH, S.) 6784. Earthscan. London.

    • Search Google Scholar
    • Export Citation
  • CHEN, Y., SHINOGI, Y. & TAIRA, M., 2010. Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality. Austr. J. Soil Res. 48. 526530.

    • Search Google Scholar
    • Export Citation
  • CHENG, C. H., LEHMANN, J., THIES, J. E., BURTON, S. D. & ENGELHARD, M. H., 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37. 14771488.

    • Search Google Scholar
    • Export Citation
  • CHENG, C. H., LEHMANN, J. & ENGELHARD, M. H., 2008. Natural oxidation of black carbon in soils: changes in molecular form and surface change along a climosequence. Geochim Cosmochim Acta. 72. 15981610.

    • Search Google Scholar
    • Export Citation
  • DELUCA, T. H., MACKENZIE, M. D., GUNDALE, M. J. & HOLBEN, W. E., 2006. Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Science Society of America Journal. 70. 448453.

    • Search Google Scholar
    • Export Citation
  • DELUCA, T. H., MACKENZIE, M. D. & GUNDALE, M. J., 2009. Biochar effects on soil nutrient transformations. In: Biochar for Environmental Management: Science and Technology. (Eds.: LEHMANN, J. & JOSEPH, S.) 251270. Earthscan. London.

    • Search Google Scholar
    • Export Citation
  • DEMEYER, A., VOUNDI NKANA, J. C. & VERLOO, M. G., 2001. Characteristics of wood ash and infuence on soil properties and nutrient uptake: an overview Bioresource Technology. 77. 287295.

    • Search Google Scholar
    • Export Citation
  • DEVI, P. & SAROHA, A. K., 2014. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresource Technology. 162. 308315.

    • Search Google Scholar
    • Export Citation
  • DOMENE, X., MATTANA, S., HANLEY, K., ENDERS, A. & LEHMANN, J., 2014. Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry. 72. 152162.

    • Search Google Scholar
    • Export Citation
  • DOWNIE, A., CROSKY, A. & MUNROE, P., 2009. Physical properties of biochar. In: Biochar for Environmental Management: Science and Technology (Eds.: LEHMANN, J. & JOSEPH, S.) 1332. Earthscan. London.

    • Search Google Scholar
    • Export Citation
  • EDELSTEIN, D. M. & TONJES, D. J., 2012. Modeling an improvement in phosphorus utilisation in tropical agriculture. J. Sustain. Agr. 36. 1835.

    • Search Google Scholar
    • Export Citation
  • ENDERS, A., HANLEY, K., WHITMAN, T., JOSEPH, S. & LEHMANN, J., 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114. 644653.

    • Search Google Scholar
    • Export Citation
  • ETIÉGNI, L. & CAMPBELL, A. G., 1991. Physical and chemical characteristics of wood ash. Bioresour. Technol. 37. 173178.

  • FARRELL, M., MACDONALD, L. M., BUTLER, G., CHIRINO-VALLE, I. & CONDRON, L. M., 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils. 50. 169178.

    • Search Google Scholar
    • Export Citation
  • FELLET, G., MARCHIOL, L., DELLE VEDOVE, G. & PERESSOTTI, A., 2011. Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere. 83. 12621267.

    • Search Google Scholar
    • Export Citation
  • GASKIN, J. W., SPEIR, A., MORRIS, L. M., OGDEN, L., HARRIS, K., LEE, D. & DAS, K. C., 2007. Potential for Pyrolysis Char to Affect Soil Moisture and Nutrient Status of a Loamy Sand Soil. Georgia Water Resources Conference, 27–29. March 2007. Proceeding. University of Georgia. Athens. G.A. (http://www.gwri.gatech.edu/node/3981)

    • Search Google Scholar
    • Export Citation
  • GASKIN, J. W., SPEIR, R. A., HARRIS, K., DAS, K. C., LEE, R. D., MORRIS, L. A. & FISHER D. S., 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 102. 623633.

    • Search Google Scholar
    • Export Citation
  • GÜEREÑA, D., LEHMANN, J., HANLEY, K., ENDERS, A., HYLAND, C. & RIHA, S., 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant and Soil. 365. 239254.

    • Search Google Scholar
    • Export Citation
  • GULYÁS M. , FUCHS M., RÉTHÁTI G., HOLES A., VARGA ZS., KOCSIS I. & FÜLEKY GY., 2014. Szilárd pirolízis melléktermékekkel kezelt talaj vizsgálata tenyészedényes modellkísérletben. Agrokémia és Talajtan. 63. 341352.

    • Search Google Scholar
    • Export Citation
  • GULYÁS M. , FUCHS M., FUTÓ Z., HOLES A. & FÜLEKY GY., 2015. Bioszenek hatása homokos és agyagos szövetű talaj kémiai tulajdonságaira. In: A hulladékgazdálkodás legújabb fejlesztési lehetőségei. Alapkutatás a Szent István Egyetem Pirolízis Technológiai Kutatóközpontjában” c. projekt kutatászáró konferencia. Szarvas, 2015. január 29. Programfüzet.

    • Search Google Scholar
    • Export Citation
  • HEDLEY, M. & MCLAUGHLIN, M., 2005. Reactions of phosphate fertilizers and by-products in soil. In: Phosphorus: Agriculture and the Environment. Agron. Monog. No. 46. (Eds.: SIMS, J. T. & SHARPLEY, A. N.) 181252. Madison, Wisconsin.

    • Search Google Scholar
    • Export Citation
  • HILBER, I., WYSS, G. S., MÄDER, P., BUCHELI, T. D., MEIER, I., VOGT, L. & SCHULIN, R., 2009. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers. Environmental Pollution. 157. 2242230.

    • Search Google Scholar
    • Export Citation
  • HUA, L., WU, W., LIU, Y., MCBRIDE, M. B. & CHEN, Y., 2009. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ. Sci. Pollut. Res. 16. 19.

    • Search Google Scholar
    • Export Citation
  • INTERNATIONAL ENERGY AGENCY, 2006. Annual Report — IEA Bioenergy. Task 34. Pyrolysis of Biomass. http://www.globalbioenergy.org/uploads/media/0707_IEA_Bioenergy_annual_report.pdf (Hozzáférés: 2015. 01. 25.)

    • Search Google Scholar
    • Export Citation
  • JIEN, S. H. & WANG, C. S., 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena. 110. 225233.

    • Search Google Scholar
    • Export Citation
  • JONES, D. L., ROUSK, J., EDWARDS-JONES, G., DELUCA, T. H. & MURPHY, D. V., 2012. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45. 113124.

    • Search Google Scholar
    • Export Citation
  • KOCSIS T. & BÍRÓ B., 2015. A bioszén hatása a talaj-növény-mikroba rendszerre: előnyök és hátrányok. Agrokémia és Talajtan. 64. (Megjelenés alatt).

    • Search Google Scholar
    • Export Citation
  • KRULL, E. S., BALDOCK, J. A., SKJEMSTAD, J. O. & SMERNIK, R. J., 2009. Characteristics of biochar: organo-chemical properties. Chapter 4. In: Biochar for Environmental Management Science and Technology. (Eds.: LEHMANN, J. & JOSEPH, S.) 5365. Earthscan. London.

    • Search Google Scholar
    • Export Citation
  • KUZYAKOV, Y., SUBBOTINA, I., CHEN, H., BOGOMOLOVA, I. & XU, X., 2009. Black carbon decomposition and incorporation into microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry. 41. 210219.

    • Search Google Scholar
    • Export Citation
  • LAIRD, D., FLEMING, P., WANG, B., HORTEN, R. & KARLEN, D., 2010. Biochar impacton nutrient leaching from a Midwestern agricultural soil. Geoderma. 158. 436442.

    • Search Google Scholar
    • Export Citation
  • LEHMANN, J. , 2007. Bio-energy in the black. Front. Ecol. Environ. 5. 381387.

  • LEHMANN, J., DA SILVA JR, J.P., STEINER, C., NEHLS, T., ZECH, W. & GLASER, B., 2003. Nutrient availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil. 249. 343357.

    • Search Google Scholar
    • Export Citation
  • LEHNMANN, J., GAUNT, J. & RONDON, M., 2006. Bio-char sequestration in terrestrial ecosystems — a review. Mitigation and Adaptation Strategies for Global Change. 11. 403427.

    • Search Google Scholar
    • Export Citation
  • LEHMANN, J., JOSEPH, S., DOWNIE, A., CROSKY, A. & MUNROE, P., 2009. Biochar for environmental management: an introduction. In: Biochar for Environmental Management: Science and Technology. (Eds.: LEHMANN, J. & JOSEPH, S.) 112. Earthscan. London.

    • Search Google Scholar
    • Export Citation
  • LEHMANN, J., RILLIG, M. C., THIES, J., MASIELLO, C. A., HOCKADAY, W. C. & CROWLEY, D., 2011. Biochar effects on soil biota, a review. Soil Biology and Biochemistry. 43. 18121836.

    • Search Google Scholar
    • Export Citation
  • LIANG, B., LEHMANN, J., SOLOMON, D., KINYANGI, J., GROSSMAN, J., O’NEILL, B., SKJEMSTAD, J. O., THIES, J., LUIZÃO, F. J., PETERSEN, J. & NEVES, E. G., 2006. Black carbon increases cation exchange capacity in soil. Soil Science Society of America Journal. 70. 17191730.

    • Search Google Scholar
    • Export Citation
  • LIANG, F., LI, G. T., LIN, Q. M. & ZHAO, X. R., 2014. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. Journal of Integrative Agriculture. 13. 525532.

    • Search Google Scholar
    • Export Citation
  • LIU, J., SCHULZ, H., BRANDL, S., MIEHTKE, H., HUWE, B. & GLASER, B., 2012. Short-term effectof biochar and compost on soil fertility and water status of a Dystric Cambisolin NE Germany under field conditions. J. Plant Nutr. Soil Sci. 175. 698707.

    • Search Google Scholar
    • Export Citation
  • LUCCHINI, P., QUILLIAM, R. S., DELUCA, T. H., VAMERALI, T. & JONES, D. L., 2014. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environmental Science and Pollution Research. 21. 32303240.

    • Search Google Scholar
    • Export Citation
  • MAGRINI-BAIR, K. A., CZERNIK, S., PILATH, H. M., EVANS, R. J., MANESS, P. C. & LEVENTHAL, J., 2009. Biomass derived, carbon sequestration, designed fertilizers. Ann. Environ. Sci. 3. 217225.

    • Search Google Scholar
    • Export Citation
  • MAJOR, J., RONDON, M., MOLINA, D., RIHA, S. & LEHMANN, J., 2010. Maize yield and nutritionduring 4 years after biochar application to a Colombian savanna Oxisol. Plant Soil. 333. 117128.

    • Search Google Scholar
    • Export Citation
  • MAKOTO, K., CHOI, D., HASHIDOKO, Y. & KOIKE, T., 2011. The growth of Larix gmelinii seedlings as affected by charcoal produced at two different temperatures. Biol. Fert. Soils. 47. 467472.

    • Search Google Scholar
    • Export Citation
  • MOHAN, D., PITTMAN, C. U. & STEELE, P. H., 2006. Pyrolysis of wood/biomass for biooil: a critical review. Energy Fuels. 20. 848889.

    • Search Google Scholar
    • Export Citation
  • NELSON, N. O., AGUDELO, S. C., YUAN, W. & GAN, J., 2011. Nitrogen and phosphorus availability in biochar-amended soils. Soil Sci. 176. 218.

    • Search Google Scholar
    • Export Citation
  • NGUYEN, B., LEHMANN, J., HOCKADAY, W. C., JOSEPH, S. & MASIELLO, C. A., 2010. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44. 33243331.

    • Search Google Scholar
    • Export Citation
  • NGUYEN, B.T. & LEHMANN, J., 2009. Black carbon decomposition under varying water regimes. Organic Geochemistry. 40. 846853.

  • NOVAK, J. M., BUSSCHER, W. J., LAIRD, D. L., AHMEDNA, M., WATTS, D. W. & NIANDOU, M. A. S., 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174. 105112.

    • Search Google Scholar
    • Export Citation
  • OGUNTUNDE, P. G., FOSU, M., AJAYI, A. E. & VAN DE GIESEN, N., 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39. 295299

    • Search Google Scholar
    • Export Citation
  • ORAM, N. J., VAN DE VOORDE, T. F. J., OUWEHAND, G. J., BEZEMER, T. M., MOMMER, L., JEFFERY, S. & VAN GROENIGEN, J. W., 2014. Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment. 191. 9298.

    • Search Google Scholar
    • Export Citation
  • PARK, J. H., CHOPPALA, G. K., BOLAN, N. S., CHUNG, J. W. & CHUASAVATHI, T., 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil. 348. 439451.

    • Search Google Scholar
    • Export Citation
  • PARVAGE, M. M., ULÉN, B., ERIKSSON, J., STROCK, J. & KIRCHMANN, H., 2013. Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils. 49. 245250.

    • Search Google Scholar
    • Export Citation
  • PENG, F., HE, P. W., LUO, Y., LU, X., LIANG, Y. & FU, J., 2012. Adsorption of phosphate by biomass char deriving from fast pyrolysis of biomass waste. CLEAN — Soil Air Water. 40. 493498.

    • Search Google Scholar
    • Export Citation
  • PIETIKÄINEN, J., KIIKKILÄ, O. & FRITZE, H., 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos. 89. 231242.

    • Search Google Scholar
    • Export Citation
  • QADEER, R., HANIF, J., SALEEM, M. A. & AFZAL, M., 1994. Characterization of activated charcoal. Journal of the Chemical Society of Pakistan. 16. 229235.

    • Search Google Scholar
    • Export Citation
  • QUILLIAM, R. S., MARSDEN, K. A., GERTLER, C., ROUSK, J., DELUCA, T. H. & JONES, D. L., 2012. Nutrient dynamics, microbial growth and weed emergence in biochar amendedsoil are influenced by time since application and reapplication rate. Agric. Ecosyst. Environ. 158. 192199.

    • Search Google Scholar
    • Export Citation
  • RAHAMAN, M. S, ELLIS, N. & MAVINIC, D. S., 2008. Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants. Water Sci. Technol. 57. 647654.

    • Search Google Scholar
    • Export Citation
  • RAJKOVICH, S., ENDERS, A., HANLEY, K., HYLAND, C., ZIMMERMAN, A. R. & LEHMANN, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varyingproperties to a temperate soil. Biol. Fertil. Soils. 48. 271284.

    • Search Google Scholar
    • Export Citation
  • RÉTHÁTI, G., CZINKOTA, I., TOLNER, L., FÜLEKY, GY. & GÁL, A., 2013. Zn megkötődés változása talaj-bioszén rendszerben. In.: Program és Előadáskivonatok, 2. Környezetkémiai Szimpózium, Dobogókő, 2013. október 10–11. (Szerk.: SALMA, I., GROSZ, B. & ZÁRAY, GY.) 34. (http://mta.hu/data/cikk/11/39/11/cikk_113911/2KKSZKiadvany2vegso.pdf)

    • Search Google Scholar
    • Export Citation
  • ROGOVSKA, N., LAIRD, D. A., RATHKE, S. J. & KARLEN, D. L., 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma. 230–231. 340347.

    • Search Google Scholar
    • Export Citation
  • SALES, B. C., CHAKOUMAKOS, B. C., BOATNER, L. A. & RAMEY, J. O., 1992. Structural evolution of the amorphous solids produced by heating crystalline MgHPO4·3H2O. J. Mater. Res. 7. 26462649.

    • Search Google Scholar
    • Export Citation
  • SIERRA, J., NOEL, C., DUFOUR, L., OZIER-LAFONTAINE, H., WELCKER, C. & DESFONTAINES, L., 2003. Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant and Soil. 252. 215226.

    • Search Google Scholar
    • Export Citation
  • SINGH, B., SINGH, B. P. & COWIE, A. L., 2010a. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research. 48. 516525.

    • Search Google Scholar
    • Export Citation
  • SINGH, B. P., HATTON, B. J., SINGH, B., COWIE, A. L. & KATHURIA, A., 2010b. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39. 12241235.

    • Search Google Scholar
    • Export Citation
  • SOHI, S. P., KRULL, E., LOPEZ-CAPEL, E. & BOL, R., 2010. A review of biochar and its use and function in soil. Advances in Agronomy. 105. 4782.

    • Search Google Scholar
    • Export Citation
  • SOLAIMAN, Z. M., BLACKWELL, P., ABBOTT, L. K.. & STORER, P. 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Aust. J. Soil Res. 48. 546554.

    • Search Google Scholar
    • Export Citation
  • SPOKAS, K. A., CANTRELL, K. B., NOVAK, J. M., ARCHER, D. W., IPPOLITO, J. A., COLLINS, H. P., BOATENG, A. A., LIMA, I., LAMBH, M. C., ALOON, A. J., LENTZD, R. D. & NICHOLS, K. A., 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality. 41. 973989.

    • Search Google Scholar
    • Export Citation
  • STEINER, C., TEIXEIRA, W. G., LEHMANN, J. & ZECH, W., 2004. Microbial response to charcoal amendments of highly weathered soilsvand Amazonian Dark Earths in Central Amazonia — preliminary results. In: Amazonian Dark Earths: explorations in time and space. (Eds.: GLASER, B. & WOODS, W. I.) 195212. Springer. Berlin.

    • Search Google Scholar
    • Export Citation
  • STEINER, C., DAS, K. C., GARCIA, M., FÖRSTER, B. & ZECH W., 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia. 51. 359366.

    • Search Google Scholar
    • Export Citation
  • TAGHIZADEH-TOOSI, A., CLOUGH, T. J., SHERLOCK, R. R. & CONDRON, L. M., 2012. Biochar adsorbed ammonia is bioavailable. Plant and Soil. 350. 5769.

    • Search Google Scholar
    • Export Citation
  • TAMMEORG, P., BRANDSTAKA, T., SIMOJOKI, A. & HELENIUS, J., 2012. Nitrogen mineralization dynamics of meat bone meal and cattle manure as affected by the application of softwood chips biochar in soil. Earth Environ. Sci. T.R.S.O. 103. 1930.

    • Search Google Scholar
    • Export Citation
  • TAMMEORG, P., SIMOJOKI, A., MÄKELÄ, P., STODDARD, F. L., ALAKUKKU, L. & HELENIUS, J., 2014. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems & Environment. 191. 108116.

    • Search Google Scholar
    • Export Citation
  • THIES, J. & RILLIG, M. C., 2009. Characteristics of biochar: biological properties. In: Biochar for Environmental Management: Science and Technology. (Eds.: LEHMANN, J. & JOSEPH, S.) 85106. Earthscan, London.

    • Search Google Scholar
    • Export Citation
  • TRANSPARENCY MARKET RESEARCH, 2015. Global Biochar Market — Industry Analysis, Market Size, Share, Growth, Trends and Forecast 2014 — 2020. http://www.transparencymarketresearch.com/biochar-market.html (Hozzáférés: 2015. február 6).

    • Search Google Scholar
    • Export Citation
  • TROMPOWSKY, P. M., BENITES, V. M., MADARI, B. E., PIMENTA, A. S., HOCKADAY, W. C. & HATCHER, P. G., 2005. Characterisation of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Org. Geochem. 36. 14801489.

    • Search Google Scholar
    • Export Citation
  • TSAI, W. T., LEE, M. K.. & CHANG, Y. M., 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrol. 76. 230237.

    • Search Google Scholar
    • Export Citation
  • ULÉN, B. & SNÄLL, S., 2007. Forms and retention of phosphorus in an illiteclay soil profile with a history of fertilisation with pig manure and mineral fertilisers. Geoderma. 137. 455465.

    • Search Google Scholar
    • Export Citation
  • VAN ZWIETEN, L., SINGH, B., JOSEPH, S., KIMBER, S., COWIE, A. & CHAN, K. Y., 2009. Biochar and emission of non-CO2 greenhouse gases from soil. Chapter 13. In: Biochar for Environmental Management: Science and Technology. (Eds.: LEHMANN, J. & JOSEPH, S.) 227249. Earthscan. London.

    • Search Google Scholar
    • Export Citation
  • VAN ZWIETEN, L., KIMBER, S., MORRIS, S., CHAN, K. Y., DOWNIE, A., RUST, J., JOSEPH, S. & COWIE, A., 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil. 327. 235246.

    • Search Google Scholar
    • Export Citation
  • VERHEIJEN, F., JEFFERY, S., BASTOS, A. C., VAN DER VELDE, M. & DIAFAS, I., 2010. Biochar application to soils — A critical scientific review of effects on soil properties, processes and functions. European Commission, Joint Research Centre, Institute for Environment and Sustainability.

    • Search Google Scholar
    • Export Citation
  • XU, G., WEI, L. L., SUN, J. N., SHAO, H. B. & CHANG, S. X., 2013. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism. Ecological Engineering. 52. 119124.

    • Search Google Scholar
    • Export Citation
  • YAMATO, M., OKIMORI, Y., WIBOWO, I. F., ANSHORI, S. & OGAWA, M., 2006. Effects of the application of charred bark in Acacia mangium on the yield of maize, cowpea, peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci. Plant Nutr. 52. 489495.

    • Search Google Scholar
    • Export Citation
  • YUAN, J. H. & XU, R. K., 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil Use Manage. 27. 110115.

    • Search Google Scholar
    • Export Citation
  • YUAN, J. H., XU, R. K., WANG, N. & LI, J. Y., 2011. Amendment of acid soils with crop residues and biochars. Pedosphere. 21. 302308.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

A szerzői útmutató magyar nyelven is rendelkezésükre áll.
Kérem, töltse le INNEN

 

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 11 0 0
Apr 2024 17 0 0
May 2024 99 0 0
Jun 2024 111 0 0
Jul 2024 82 0 0
Aug 2024 39 0 0
Sep 2024 3 0 0