Authors:
Attila Dunai PE GK Növénytermesztéstani és Talajtani Tanszék, Keszthely

Search for other papers by Attila Dunai in
Current site
Google Scholar
PubMed
Close
and
Zoltán Tóth PE GK Növénytermesztéstani és Talajtani Tanszék, Keszthely

Search for other papers by Zoltán Tóth in
Current site
Google Scholar
PubMed
Close
Restricted access

A talajok aggregátum-stabilitásának ismerete kulcsfontosságú a talajtermékenység fenntartásának és növelésének hatékony kivitelezése, valamint a talajok védelme szempontjából.

A talajaggregátumok kialakulása és végső soron a stabilitása is jórészt a szerves anyagok mennyiségének és minőségének függvénye. Találunk közöttük állandó, cementáló jellegű anyagokat, ill. átmeneti jellegű kötőanyagokat is. Mivel a talajok különböző mértékben tartalmazzák ezen anyagokat, és azok különböző ideig hatnak az aggregátumok szerkezetének stabilitására, indokolt lehet különböző szervesanyag-kiegészítésű hosszú távú tartamkísérletek mintázása az aggregátum-stabilitás értékek meghatározására.A tartamkísérletek bázisán már korábban is végeztünk a talaj agronómiai szerkezetére és szerkezeti stabilitásra irányuló vizsgálatokat. Ezekre alapozottan új tartamkísérleti parcellák vizsgálatával folytattuk aggregátum stabilitás vizsgálatainkat a növekvő adagú műtrágyázás és a különböző formájú szerves anyag visszapótlású kezelésekben.

Vizsgálatainkban a vízálló aggregátumok százalékos arányát határoztuk meg (Water-stable aggregates, WSA) egy Eijkelkamp (Hollandia) nedves szita segítségével. Vizsgálatainkhoz az 1–2 mm közötti talajfrakciót használtuk. A méréseket 250 mikronos szitákon végeztük.

A mintavétel után két héttel végzett vizsgálatok eredményeiből megállapítottuk, hogy a szervestrágya-kiegészítések közül a szár+zöldtrágya leszántás adta a legnagyobb stabilitás értéket. A N-adagok közül pedig a 140 kg·ha−1 kezelésben mértük a legnagyobb értéket. Utóbbi szignifikánsan nagyobbnak bizonyult minden más N-kezelésénél. A kombinációs hatások vizsgálatánál a szárleszántásos változat 140 kg·ha−1-os nitrogénadag melletti stabilitás értéke több mint kétszerese volt a nem szervestrágya-kiegészítésű kontroll N-parcellákénak.

A mintavétel után három hónappal végzett stabilitásvizsgálat eredményei alap-ján a trágyázási változatok makroaggregátum-stabilitás értékei kiegyenlítődtek. Az N-adagok hatását vizsgálva azonban a korábban legnagyobb stabilitású 140 kg·ha−1-os N-kezelés adta a legkisebb értéket. A két időpont eredményeit összehasonlítva megállapítható, hogy a stabilitás értékek minden trágyázási változatban és a 140·kg ha−1-os N-adag kivételével minden N-kezelésben jelentősen növekedtek.

  • ALVARO-FUENTES, J., ARRUE, J. L., CANTERO-MARTINEZ, C. & LOPEZ, M. V., 2008. Aggregate breakdown during tillage in a Mediterranean loamy soil. Soil Tillage Res. 101. 6268.

    • Search Google Scholar
    • Export Citation
  • AMEZKETA, E. , 1999. Soil aggregate stability: a review. Journal of Sustainable Agriculture 14. (23) 83151.

  • ANDRUSCHKEWITSCH, R., KOCH, H-J. & LUDWIG, B., 2014. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma. 217–218. 5764.

    • Search Google Scholar
    • Export Citation
  • ANNABI, M., lE BISSONNAIS, Y., lE VILLIO-POITRENAUD, M. & HOUOT, S., 2011. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agriculture, Ecosystems and Environment. 144. (2011) 382389.

    • Search Google Scholar
    • Export Citation
  • AOYAMA, M., ANGERS, D.A. & N’DAYEGAMIYE, A., 1999. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Can. J. Soil Sci. 79. 295302.

    • Search Google Scholar
    • Export Citation
  • ARMSTRONG, A. S. B. & TANTON, T. W., 1992. Gypsum applications to aggregated saline sodic clay topsoils. J. Soil Sci. 43. 249260.

  • ARYA, L. M. & BLAKE, G. R., 1972. Stabilization of newly formed soil aggregates. Agron. J. 64. 177180.

  • BARBERA, V., POMA, I., GRISTINA, L., NOVARA, A. & EGLI, M., 2012. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degrad. Environ. 23. 8291.

    • Search Google Scholar
    • Export Citation
  • BARRAL, M.T., ARIAS, M. & GUERIF, J., 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil Tillage Res. 46. 261272.

    • Search Google Scholar
    • Export Citation
  • BARTLETT, R., & JAMES, B., 1980. Studying dried, stored soil samples—some pitfalls. Soil Science Society of America Journal. 44. (4) 721724.

    • Search Google Scholar
    • Export Citation
  • BAST, A., WILCKE,W., GRAF, F., LÜSCHER, P. & GÄRTNER, H., 2014. The use of mycorrhiza for ecoengineering measures in steep alpine environments: effects on soil aggregate formation and fine-root development. Earth Surf. Process. Landf. 39. 17531763.

    • Search Google Scholar
    • Export Citation
  • BAST, A.B., WILCKE, W., GRAF, F., LÜSCHER, P. & GÄRTNER, H., 2015. Simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils. Catena. 127. 170176.

    • Search Google Scholar
    • Export Citation
  • BAVER, L.D., GARDNER, W.H. & GARDNER, W.R., 1972. Soil Physics,4th ed. John Wiley. New York.

  • BLAKE, G. R. & GILMAN, R. D., 1970. Thixotropic changes with ageing of synthetic soil aggregates. Soil Sci. Soc. Am. Proc. 34. 561564.

    • Search Google Scholar
    • Export Citation
  • BLANCO-MOURE, N., MORET-FERNÁNDEZ, D. & LÓPEZ, M. V., 2012. Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain. Catena. 99. 3441.

    • Search Google Scholar
    • Export Citation
  • BOIX-FAYOS, C., CALVO-CASES, A. & IMESON, A.C., 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena. 44. 4767.

    • Search Google Scholar
    • Export Citation
  • BRYAN, R.B., GOVERS, G. & POESEN, J., 1989. The concept of soil erodibility and some problems of assessment and application. Catena 16. 393412.

    • Search Google Scholar
    • Export Citation
  • BROERSMA, K., ROBERTSON, J. A. & CHANASYK, D. S., 1997. The effects of diverse cropping systems on aggregation of a Luvisolic soil in the Peace River region. Can. J. Soil Sci. 77. 323329.

    • Search Google Scholar
    • Export Citation
  • BROWN, G. G., BAROIS, I. & LAVELLE, P., 2000. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol. 36. 177198.

    • Search Google Scholar
    • Export Citation
  • CARON, J., KAY, B.D. & PERFECT, E., 1992. Short-term decrease in soil structure stability following bromegrass establishment on a clay loam soil. Plant Soil 145. 121130.

    • Search Google Scholar
    • Export Citation
  • CHAN, K. Y. & HEENAN, D. P., 1996. The influence of crop rotation on soil structure and soil physical properties under conventional tillage. Soil Tillage Res. 37. 113125.

    • Search Google Scholar
    • Export Citation
  • CHAN, K. Y. & HEENAN, D. P., 1999. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci. Soc. Am. J. 63. 18411844.

    • Search Google Scholar
    • Export Citation
  • CHENU, C. , 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal 64. 14791486.

    • Search Google Scholar
    • Export Citation
  • CHIVENGE, P., VANLAUWE, B., GENTILE, R. & SIX, J., 2011. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol. Biochem. 43. 657666.

    • Search Google Scholar
    • Export Citation
  • COSENTINO, D., lE BISSONNAIS, Y. & CHENU, C., 2006. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biology & Biochemistry 38. 20532062.

    • Search Google Scholar
    • Export Citation
  • DALAL, R. C. & BRIDGE, B. J., 1996. Aggregation and organic matter storage in sub-humid and semi-arid soils. In: Structure and Organic Matter Storage in Agricultural Soils. (Eds.: CARTER, M. R. & STEWART, B. A.) 263307. CRC Press. Boca Raton, FL.

    • Search Google Scholar
    • Export Citation
  • DIAZ, E., ROLDÁN, A., LAX, A. & ALBALADEJO, J., 1994. Formation of stable aggregates in degraded soil by amendment with urban refuse and peat. Geoderma. 63. 277288.

    • Search Google Scholar
    • Export Citation
  • DUIKER, S. W. & LAL, R., 1999. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res. 52. 7381.

    • Search Google Scholar
    • Export Citation
  • DVORACSEK M. , 1957. V/7. fejezet: A talajmorzsák vízállóságának mérése. In: Talajfi-zika és talajkolloidika. (DI GLÉRIA J., KLIMES-SZMIK A. & DVORACSEK M.) 449465. Akadémiai Kiadó. Budapest.

    • Search Google Scholar
    • Export Citation
  • FACELLI, E. & FACELLI, J. M., 2002. Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia 133. 5461.

    • Search Google Scholar
    • Export Citation
  • HAYNES, R. J. & BEARE, M. H., 1997. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol. Biochem. 29. 16471653.

    • Search Google Scholar
    • Export Citation
  • HAYNES, R. J. & NAIDU, R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51. 123137.

    • Search Google Scholar
    • Export Citation
  • HUISZ, A. , 2012. A talajszerkezet és a szervesanyag-megoszlás változásainak jellemzése új módszerekkel művelési tartamkísérletben. PhD-értekezés. Debrecen.

    • Search Google Scholar
    • Export Citation
  • IGWE, C. A., ZAREI, M. & STAHR, K., 2009. Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena. 77. 232237.

    • Search Google Scholar
    • Export Citation
  • JAGADAMMA, S., LAL, R., HOEFT, R. G., NAFZIGER, E. D. & ADEE, E. A., 2008. Nitrogen fertilization and cropping system impacts on soil properties and their relationship to crop yield in the central Corn Belt, USA. Soil & Tillage Research 98. (2008) 120129.

    • Search Google Scholar
    • Export Citation
  • JASTROW, J. D. , 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28. 665676.

    • Search Google Scholar
    • Export Citation
  • JOZEFACIUK, G. & CZACHOR, H., 2014. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability. Geoderma. 221–222. (2014) 110.

    • Search Google Scholar
    • Export Citation
  • KAZÓ B. , 1958. Homokfelszín megkötés hazai gyártmányú "Solakrol"-lal. Agrokémia és Talajtan. 7. 141150.

  • KAY, B. D. , 1998. Soil structure and organic carbon: a review. In: Soil Processes and the Carbon Cycle. Eds.: (LAL, R., KIMBLE, J.., FOLLETT, R. F. & STEWART, B. A.) 169197. CRC Press. Boca Raton.

    • Search Google Scholar
    • Export Citation
  • KAY, B. D. & ANGERS, D. A., 1999. Structure. In: Handbook of Soil Science. (Ed.: SUMNER, M. E.) 229276. CRC press, Boca Raton.

  • KEMPER, W. D. & KOCH, E. J., 1966. Aggregate stability of soils from western portions of the United States and Canada. U.S. Dep. Agric. Tech. Bull., 1355.

    • Search Google Scholar
    • Export Citation
  • KEMPER, W. D. & ROSENAU, R. C., 1986. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, 2nd Ed.; Klute, A., Ed.; ASA-SSSA: Madison, WI. 425442.

    • Search Google Scholar
    • Export Citation
  • KEMPER, W. D. & ROSENAU, R. C., 1984. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 48. 10011006.

  • LADD, J. N., FOSTER, R. C., NANNIPIERI, P. & OADES, J. M., 1996. Soil structure and biological activity. In: Soil Biochemistry, vol. 9. (Eds.: STOTZKY, G. & BOLLAG, J.M.) 2378. Marcel Dekker. New York.

    • Search Google Scholar
    • Export Citation
  • LAYTON, J. B., SKIDMORE, E. L. & THOMPSON, C. A., 1993. Winter-associated changes in dry-soil aggregation as influenced by management. Soil Sci. Soc. Am. J. 57. 15681572.

    • Search Google Scholar
    • Export Citation
  • lE BISSONNAIS, Y. , 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science. 47. 425431.

    • Search Google Scholar
    • Export Citation
  • LE BISSONNAIS, Y., BLAVET, D., DE NONI, G., LAURENT, J. Y., ASSELINE, J. & CHENU, C., 2007. Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science. 58. 188195.

    • Search Google Scholar
    • Export Citation
  • LIU, A., MA, B. L. & BOMKE, A. A., 2005. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Science Society of America Journal. 69. 20412048.

    • Search Google Scholar
    • Export Citation
  • LONG, P., SUI, P., GAO, W., WANG, B., HUANG, J., YAN, P., ZOU, J., YAN, L. & CHEN, Y., 2015. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. Journal of Integrative Agriculture 2015. 14. (4) 774787.

    • Search Google Scholar
    • Export Citation
  • MARTENS, D. A. , 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 32. 361369.

    • Search Google Scholar
    • Export Citation
  • MAZURAK, A. P. , 1950. Aggregation of clay separates from bentonite, kaolinite and a hydrous mica soil. Soil Sci. Soc. Amer. Proc. 15. 1824.

    • Search Google Scholar
    • Export Citation
  • MBAGWU, J. S. C. , 1989. Influence of Cattle-Feedlot Manure on Aggregate Stability, Plastic Limit and Water Relations of Three Soils in North-Central Italy. Biological Wastes. 28. 257269.

    • Search Google Scholar
    • Export Citation
  • MENGEL, K., & KIRKBY, E. A., 2001. Principles of Plant Nutrition. Kluwer Acamdemic Publishers. Dordrect, The Netherlands.

  • NIMMO, J. R. , 2013. Aggregation: Physical Aspects, Reference Module in Earth Systems and Environmental Sciences. Elsevier. doi: 10.1016/B978-0-12-409548-9.05087-9.

    • Search Google Scholar
    • Export Citation
  • OADES, J. M. & WATERS, A. G., 1991. Aggregate hierarchy in soils. Aust. J. Soil Res. 29. 815828.

  • OADES, J. M. , 1993. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma. 56. 377400.

  • PAUL, B. K., VANLAUWE, B., AYUKE, F., GASSNER, A., HOOGMOED, M., HURISSO, T. T., KOALA, S., LELEI, D., NDABAMENYE, T., SIX, J. & PULLEMAN, J. J., 2013. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agriculture, Ecosystems and Environment. 164. 14–22.

    • Search Google Scholar
    • Export Citation
  • PARE, T., DINEL, H., MOULIN, A. P. & TOWNLEY-SMITH, L., 1999. Organic matter quality and structure stability of a Black Chernozemic soil under different manure and tillage practices. Geoderma. 91. 311326.

    • Search Google Scholar
    • Export Citation
  • PENG, X. H., HORN, R., ZHANG, B. & ZHAO, Q. G., 2004. Mechanisms of soil vulnerability to compaction of homogenized and recompacted Ultisols. Soil and Tillage Research. 76. (2) 125137.

    • Search Google Scholar
    • Export Citation
  • PICCOLO, A., PIETRAMELLARA, G. & MBAGWU, J. S. C., 1997. Use of humic substances as soil conditioners to increase aggregate stability. Geoderma. 75. 267277.

    • Search Google Scholar
    • Export Citation
  • RILLIG, M. C., WRIGHT, S. F. & EVINER, V. T., 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil. 238. 325333.

    • Search Google Scholar
    • Export Citation
  • ROBERSON, E., SARIG, S., SHENNAN, C. & FIRESTONE, M. 1995. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Sci. Soc. Am. J. 59. 15871594.

    • Search Google Scholar
    • Export Citation
  • SAHA, D., KUKAL, S. S. & SHARMA, S., 2011. Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant Soil. 339. 457470.

    • Search Google Scholar
    • Export Citation
  • SCHLECHT-PIETSCH, S., WAGNER, U. & ANDERSON, T. H., 1994. Changes in composition of soil polysaccharides and aggregate stability after carbon amendments to different textured soils. Appl. Soil Ecol. 1. 145154.

    • Search Google Scholar
    • Export Citation
  • SCHUTTER, M. E. & DICK, R. P., 2002. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J. 66. 142153.

    • Search Google Scholar
    • Export Citation
  • SCHWEIKLE, U., BLAKE, G. R. & ARYA, L. M., 1974. Matric suction and stability changes in sheared soil. Trans. 10th Int. Congr. Soil Sci. 1. 187193.

    • Search Google Scholar
    • Export Citation
  • SHAO-SHAN, A., DARBOUX, F. & CHENG, M., 2013. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma. 209–210. 7585.

    • Search Google Scholar
    • Export Citation
  • SIDDIKY, M. R. K., KOHLER, J., COSME, M. & RILLIG, M. C., 2012. Soil biota effects on soil structure: interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biol. Biochem. 50. 3339.

    • Search Google Scholar
    • Export Citation
  • SIX, J., ELLIOTT, E. T. & PAUSTIAN, K., 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63. 13501358.

    • Search Google Scholar
    • Export Citation
  • SIX, J., ELLIOTT, E. T. & PAUSTIAN, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32. 20992103.

    • Search Google Scholar
    • Export Citation
  • SPACCINI, R., MBAGWU, J. S. C., IGWE, C. A., CONTE, P. & PICCOLO, A., 2004. Carbohydrates and aggregation in lowlands soils of Nigeria as influenced by organic inputs. Soil & Tillage Research. 75. 161172.

    • Search Google Scholar
    • Export Citation
  • THOMSEN, I. K., SCHJONNING, P., OLESEN, J. E. & CHRISTENSEN, B. T., 1999. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma. 89. 199218.

    • Search Google Scholar
    • Export Citation
  • THOMSEN, I. K., SCHJONNING, P., OLESEN, J. E. & CHRISTENSEN, B. T., 2003. C and N turnover in structurally intact soils of different texture. Soil Biol. Biochem. 35. 765774.

    • Search Google Scholar
    • Export Citation
  • TISDALE, S. L., NELSON, W. L. & BEATON, J. D. 1993. Soil fertility and soil fertilizers. Macmillan Publishing Co. N. Y. TISDALL, J. M., 1991. Fungal hyphae and structural stability of soil. Austr. J. Soil Res. 29. 729743.

    • Search Google Scholar
    • Export Citation
  • TISDALL, J. M. , 1996. Formation of soil aggregates and accumulation of soil organic matter. In: Structure and Organic Matter Storage in Agricultural Soils. (Eds.: Car-ter, M. R. & Stewart, B. A.) 5796. CRC Press. Boca Raton, FL.

    • Search Google Scholar
    • Export Citation
  • TRAORÉ, O., GROLEAU-RENAUD, V., PLANTUREUX, S. & TUBEILEH, V., 2000. Effect of root mucilage and modelled root exudates on soil structure. European Journal of Soil Science. 51. 575581.

    • Search Google Scholar
    • Export Citation
  • UTOMO, W. H. & DEXTER, A. R., 1981. Effect of ageing on compression resistance and water stability of soil aggregates disturbed by tillage. Soil Tillage Res. 1. 127137.

    • Search Google Scholar
    • Export Citation
  • YODER, R. E. , 1936. A direct method of aggregate analysis of soils and a study of physical nature of erosion losses. J. Am. Soc. Agron. 28. 337351.

    • Search Google Scholar
    • Export Citation
  • VILLAR, M. C., PETRIKOVA, V., D AZ-RAVIÑA, M. & CARBALLAS, T., 2004. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma 122. (2004) 7382.

    • Search Google Scholar
    • Export Citation
  • WANG, W., CHEN, W., WANG, K., XIE, X., YIN, C. & CHEN, A. 2011. Effects of Long-Term Fertilization on the Distribution of Carbon, Nitrogen and Phosphorus in Water-Stable Aggregates in Paddy Soil. Agricultural Sciences in China. 10. (12) 19321940.

    • Search Google Scholar
    • Export Citation
  • WHALEN, J. K. & CHANG, C., 2002. Macroaggregate characteristics in cultivated soils after 25 years annual manure applications. Soil Sci. Soc. Am. J. 66. 16371647.

    • Search Google Scholar
    • Export Citation
  • WINSOME, T. & MCCOLL, J. G., 1998. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer Eisen (Megascolecidae). Soil Biol. Biochem. 30. 16771687.

    • Search Google Scholar
    • Export Citation
  • WRIGHT, S., STARR, J. & PALTINEAU, I., 1999. Changes in aggregate stability and concentration of glomalin during tillate management transition. Soil Sci. Soc. Am. J. 63. 18251829.

    • Search Google Scholar
    • Export Citation
  • ZALLER, J. G. & KÖPKE, U., 2004. Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol. Fertil. Soils 40. 222229.

    • Search Google Scholar
    • Export Citation
  • ZHANG, X. C. & NORTON, L. D., 2002. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260. 194205.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 36 0 0
Sep 2024 74 0 0
Oct 2024 589 0 0
Nov 2024 839 0 0
Dec 2024 474 0 0
Jan 2025 150 0 0
Feb 2025 0 0 0