A talajok aggregátum-stabilitásának ismerete kulcsfontosságú a talajtermékenység fenntartásának és növelésének hatékony kivitelezése, valamint a talajok védelme szempontjából.
A talajaggregátumok kialakulása és végső soron a stabilitása is jórészt a szerves anyagok mennyiségének és minőségének függvénye. Találunk közöttük állandó, cementáló jellegű anyagokat, ill. átmeneti jellegű kötőanyagokat is. Mivel a talajok különböző mértékben tartalmazzák ezen anyagokat, és azok különböző ideig hatnak az aggregátumok szerkezetének stabilitására, indokolt lehet különböző szervesanyag-kiegészítésű hosszú távú tartamkísérletek mintázása az aggregátum-stabilitás értékek meghatározására.A tartamkísérletek bázisán már korábban is végeztünk a talaj agronómiai szerkezetére és szerkezeti stabilitásra irányuló vizsgálatokat. Ezekre alapozottan új tartamkísérleti parcellák vizsgálatával folytattuk aggregátum stabilitás vizsgálatainkat a növekvő adagú műtrágyázás és a különböző formájú szerves anyag visszapótlású kezelésekben.
Vizsgálatainkban a vízálló aggregátumok százalékos arányát határoztuk meg (Water-stable aggregates, WSA) egy Eijkelkamp (Hollandia) nedves szita segítségével. Vizsgálatainkhoz az 1–2 mm közötti talajfrakciót használtuk. A méréseket 250 mikronos szitákon végeztük.
A mintavétel után két héttel végzett vizsgálatok eredményeiből megállapítottuk, hogy a szervestrágya-kiegészítések közül a szár+zöldtrágya leszántás adta a legnagyobb stabilitás értéket. A N-adagok közül pedig a 140 kg·ha−1 kezelésben mértük a legnagyobb értéket. Utóbbi szignifikánsan nagyobbnak bizonyult minden más N-kezelésénél. A kombinációs hatások vizsgálatánál a szárleszántásos változat 140 kg·ha−1-os nitrogénadag melletti stabilitás értéke több mint kétszerese volt a nem szervestrágya-kiegészítésű kontroll N-parcellákénak.
A mintavétel után három hónappal végzett stabilitásvizsgálat eredményei alap-ján a trágyázási változatok makroaggregátum-stabilitás értékei kiegyenlítődtek. Az N-adagok hatását vizsgálva azonban a korábban legnagyobb stabilitású 140 kg·ha−1-os N-kezelés adta a legkisebb értéket. A két időpont eredményeit összehasonlítva megállapítható, hogy a stabilitás értékek minden trágyázási változatban és a 140·kg ha−1-os N-adag kivételével minden N-kezelésben jelentősen növekedtek.
ALVARO-FUENTES, J., ARRUE, J. L., CANTERO-MARTINEZ, C. & LOPEZ, M. V., 2008. Aggregate breakdown during tillage in a Mediterranean loamy soil. Soil Tillage Res. 101. 62–68.
AMEZKETA, E. , 1999. Soil aggregate stability: a review. Journal of Sustainable Agriculture 14. (2–3) 83–151.
ANDRUSCHKEWITSCH, R., KOCH, H-J. & LUDWIG, B., 2014. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma. 217–218. 57–64.
ANNABI, M., lE BISSONNAIS, Y., lE VILLIO-POITRENAUD, M. & HOUOT, S., 2011. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agriculture, Ecosystems and Environment. 144. (2011) 382–389.
AOYAMA, M., ANGERS, D.A. & N’DAYEGAMIYE, A., 1999. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Can. J. Soil Sci. 79. 295–302.
ARMSTRONG, A. S. B. & TANTON, T. W., 1992. Gypsum applications to aggregated saline sodic clay topsoils. J. Soil Sci. 43. 249–260.
ARYA, L. M. & BLAKE, G. R., 1972. Stabilization of newly formed soil aggregates. Agron. J. 64. 177–180.
BARBERA, V., POMA, I., GRISTINA, L., NOVARA, A. & EGLI, M., 2012. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degrad. Environ. 23. 82–91.
BARRAL, M.T., ARIAS, M. & GUERIF, J., 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil Tillage Res. 46. 261–272.
BARTLETT, R., & JAMES, B., 1980. Studying dried, stored soil samples—some pitfalls. Soil Science Society of America Journal. 44. (4) 721–724.
BAST, A., WILCKE,W., GRAF, F., LÜSCHER, P. & GÄRTNER, H., 2014. The use of mycorrhiza for ecoengineering measures in steep alpine environments: effects on soil aggregate formation and fine-root development. Earth Surf. Process. Landf. 39. 1753–1763.
BAST, A.B., WILCKE, W., GRAF, F., LÜSCHER, P. & GÄRTNER, H., 2015. Simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils. Catena. 127. 170–176.
BAVER, L.D., GARDNER, W.H. & GARDNER, W.R., 1972. Soil Physics,4th ed. John Wiley. New York.
BLAKE, G. R. & GILMAN, R. D., 1970. Thixotropic changes with ageing of synthetic soil aggregates. Soil Sci. Soc. Am. Proc. 34. 561–564.
BLANCO-MOURE, N., MORET-FERNÁNDEZ, D. & LÓPEZ, M. V., 2012. Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain. Catena. 99. 34–41.
BOIX-FAYOS, C., CALVO-CASES, A. & IMESON, A.C., 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena. 44. 47–67.
BRYAN, R.B., GOVERS, G. & POESEN, J., 1989. The concept of soil erodibility and some problems of assessment and application. Catena 16. 393–412.
BROERSMA, K., ROBERTSON, J. A. & CHANASYK, D. S., 1997. The effects of diverse cropping systems on aggregation of a Luvisolic soil in the Peace River region. Can. J. Soil Sci. 77. 323–329.
BROWN, G. G., BAROIS, I. & LAVELLE, P., 2000. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol. 36. 177–198.
CARON, J., KAY, B.D. & PERFECT, E., 1992. Short-term decrease in soil structure stability following bromegrass establishment on a clay loam soil. Plant Soil 145. 121–130.
CHAN, K. Y. & HEENAN, D. P., 1996. The influence of crop rotation on soil structure and soil physical properties under conventional tillage. Soil Tillage Res. 37. 113–125.
CHAN, K. Y. & HEENAN, D. P., 1999. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci. Soc. Am. J. 63. 1841–1844.
CHENU, C. , 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal 64. 1479–1486.
CHIVENGE, P., VANLAUWE, B., GENTILE, R. & SIX, J., 2011. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol. Biochem. 43. 657–666.
COSENTINO, D., lE BISSONNAIS, Y. & CHENU, C., 2006. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biology & Biochemistry 38. 2053–2062.
DALAL, R. C. & BRIDGE, B. J., 1996. Aggregation and organic matter storage in sub-humid and semi-arid soils. In: Structure and Organic Matter Storage in Agricultural Soils. (Eds.: CARTER, M. R. & STEWART, B. A.) 263–307. CRC Press. Boca Raton, FL.
DIAZ, E., ROLDÁN, A., LAX, A. & ALBALADEJO, J., 1994. Formation of stable aggregates in degraded soil by amendment with urban refuse and peat. Geoderma. 63. 277–288.
DUIKER, S. W. & LAL, R., 1999. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res. 52. 73–81.
DVORACSEK M. , 1957. V/7. fejezet: A talajmorzsák vízállóságának mérése. In: Talajfi-zika és talajkolloidika. (DI GLÉRIA J., KLIMES-SZMIK A. & DVORACSEK M.) 449–465. Akadémiai Kiadó. Budapest.
FACELLI, E. & FACELLI, J. M., 2002. Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia 133. 54–61.
HAYNES, R. J. & BEARE, M. H., 1997. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol. Biochem. 29. 1647–1653.
HAYNES, R. J. & NAIDU, R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51. 123–137.
HUISZ, A. , 2012. A talajszerkezet és a szervesanyag-megoszlás változásainak jellemzése új módszerekkel művelési tartamkísérletben. PhD-értekezés. Debrecen.
IGWE, C. A., ZAREI, M. & STAHR, K., 2009. Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena. 77. 232–237.
JAGADAMMA, S., LAL, R., HOEFT, R. G., NAFZIGER, E. D. & ADEE, E. A., 2008. Nitrogen fertilization and cropping system impacts on soil properties and their relationship to crop yield in the central Corn Belt, USA. Soil & Tillage Research 98. (2008) 120–129.
JASTROW, J. D. , 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28. 665–676.
JOZEFACIUK, G. & CZACHOR, H., 2014. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability. Geoderma. 221–222. (2014) 1–10.
KAZÓ B. , 1958. Homokfelszín megkötés hazai gyártmányú "Solakrol"-lal. Agrokémia és Talajtan. 7. 141–150.
KAY, B. D. , 1998. Soil structure and organic carbon: a review. In: Soil Processes and the Carbon Cycle. Eds.: (LAL, R., KIMBLE, J.., FOLLETT, R. F. & STEWART, B. A.) 169–197. CRC Press. Boca Raton.
KAY, B. D. & ANGERS, D. A., 1999. Structure. In: Handbook of Soil Science. (Ed.: SUMNER, M. E.) 229–276. CRC press, Boca Raton.
KEMPER, W. D. & KOCH, E. J., 1966. Aggregate stability of soils from western portions of the United States and Canada. U.S. Dep. Agric. Tech. Bull., 1355.
KEMPER, W. D. & ROSENAU, R. C., 1986. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, 2nd Ed.; Klute, A., Ed.; ASA-SSSA: Madison, WI. 425–442.
KEMPER, W. D. & ROSENAU, R. C., 1984. Soil cohesion as affected by time and water content. Soil Sci. Soc. Am. J. 48. 1001–1006.
LADD, J. N., FOSTER, R. C., NANNIPIERI, P. & OADES, J. M., 1996. Soil structure and biological activity. In: Soil Biochemistry, vol. 9. (Eds.: STOTZKY, G. & BOLLAG, J.M.) 23–78. Marcel Dekker. New York.
LAYTON, J. B., SKIDMORE, E. L. & THOMPSON, C. A., 1993. Winter-associated changes in dry-soil aggregation as influenced by management. Soil Sci. Soc. Am. J. 57. 1568–1572.
lE BISSONNAIS, Y. , 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science. 47. 425–431.
LE BISSONNAIS, Y., BLAVET, D., DE NONI, G., LAURENT, J. Y., ASSELINE, J. & CHENU, C., 2007. Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science. 58. 188–195.
LIU, A., MA, B. L. & BOMKE, A. A., 2005. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Science Society of America Journal. 69. 2041–2048.
LONG, P., SUI, P., GAO, W., WANG, B., HUANG, J., YAN, P., ZOU, J., YAN, L. & CHEN, Y., 2015. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. Journal of Integrative Agriculture 2015. 14. (4) 774–787.
MARTENS, D. A. , 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 32. 361–369.
MAZURAK, A. P. , 1950. Aggregation of clay separates from bentonite, kaolinite and a hydrous mica soil. Soil Sci. Soc. Amer. Proc. 15. 18–24.
MBAGWU, J. S. C. , 1989. Influence of Cattle-Feedlot Manure on Aggregate Stability, Plastic Limit and Water Relations of Three Soils in North-Central Italy. Biological Wastes. 28. 257–269.
MENGEL, K., & KIRKBY, E. A., 2001. Principles of Plant Nutrition. Kluwer Acamdemic Publishers. Dordrect, The Netherlands.
NIMMO, J. R. , 2013. Aggregation: Physical Aspects, Reference Module in Earth Systems and Environmental Sciences. Elsevier. doi: 10.1016/B978-0-12-409548-9.05087-9.
OADES, J. M. & WATERS, A. G., 1991. Aggregate hierarchy in soils. Aust. J. Soil Res. 29. 815–828.
OADES, J. M. , 1993. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma. 56. 377–400.
PAUL, B. K., VANLAUWE, B., AYUKE, F., GASSNER, A., HOOGMOED, M., HURISSO, T. T., KOALA, S., LELEI, D., NDABAMENYE, T., SIX, J. & PULLEMAN, J. J., 2013. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agriculture, Ecosystems and Environment. 164. 14–22.
PARE, T., DINEL, H., MOULIN, A. P. & TOWNLEY-SMITH, L., 1999. Organic matter quality and structure stability of a Black Chernozemic soil under different manure and tillage practices. Geoderma. 91. 311–326.
PENG, X. H., HORN, R., ZHANG, B. & ZHAO, Q. G., 2004. Mechanisms of soil vulnerability to compaction of homogenized and recompacted Ultisols. Soil and Tillage Research. 76. (2) 125–137.
PICCOLO, A., PIETRAMELLARA, G. & MBAGWU, J. S. C., 1997. Use of humic substances as soil conditioners to increase aggregate stability. Geoderma. 75. 267–277.
RILLIG, M. C., WRIGHT, S. F. & EVINER, V. T., 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil. 238. 325–333.
ROBERSON, E., SARIG, S., SHENNAN, C. & FIRESTONE, M. 1995. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Sci. Soc. Am. J. 59. 1587–1594.
SAHA, D., KUKAL, S. S. & SHARMA, S., 2011. Landuse impacts on SOC fractions and aggregate stability in typic ustochrepts of Northwest India. Plant Soil. 339. 457–470.
SCHLECHT-PIETSCH, S., WAGNER, U. & ANDERSON, T. H., 1994. Changes in composition of soil polysaccharides and aggregate stability after carbon amendments to different textured soils. Appl. Soil Ecol. 1. 145–154.
SCHUTTER, M. E. & DICK, R. P., 2002. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J. 66. 142–153.
SCHWEIKLE, U., BLAKE, G. R. & ARYA, L. M., 1974. Matric suction and stability changes in sheared soil. Trans. 10th Int. Congr. Soil Sci. 1. 187–193.
SHAO-SHAN, A., DARBOUX, F. & CHENG, M., 2013. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma. 209–210. 75–85.
SIDDIKY, M. R. K., KOHLER, J., COSME, M. & RILLIG, M. C., 2012. Soil biota effects on soil structure: interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biol. Biochem. 50. 33–39.
SIX, J., ELLIOTT, E. T. & PAUSTIAN, K., 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63. 1350–1358.
SIX, J., ELLIOTT, E. T. & PAUSTIAN, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32. 2099–2103.
SPACCINI, R., MBAGWU, J. S. C., IGWE, C. A., CONTE, P. & PICCOLO, A., 2004. Carbohydrates and aggregation in lowlands soils of Nigeria as influenced by organic inputs. Soil & Tillage Research. 75. 161–172.
THOMSEN, I. K., SCHJONNING, P., OLESEN, J. E. & CHRISTENSEN, B. T., 1999. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma. 89. 199–218.
THOMSEN, I. K., SCHJONNING, P., OLESEN, J. E. & CHRISTENSEN, B. T., 2003. C and N turnover in structurally intact soils of different texture. Soil Biol. Biochem. 35. 765–774.
TISDALE, S. L., NELSON, W. L. & BEATON, J. D. 1993. Soil fertility and soil fertilizers. Macmillan Publishing Co. N. Y. TISDALL, J. M., 1991. Fungal hyphae and structural stability of soil. Austr. J. Soil Res. 29. 729–743.
TISDALL, J. M. , 1996. Formation of soil aggregates and accumulation of soil organic matter. In: Structure and Organic Matter Storage in Agricultural Soils. (Eds.: Car-ter, M. R. & Stewart, B. A.) 57–96. CRC Press. Boca Raton, FL.
TRAORÉ, O., GROLEAU-RENAUD, V., PLANTUREUX, S. & TUBEILEH, V., 2000. Effect of root mucilage and modelled root exudates on soil structure. European Journal of Soil Science. 51. 575–581.
UTOMO, W. H. & DEXTER, A. R., 1981. Effect of ageing on compression resistance and water stability of soil aggregates disturbed by tillage. Soil Tillage Res. 1. 127–137.
YODER, R. E. , 1936. A direct method of aggregate analysis of soils and a study of physical nature of erosion losses. J. Am. Soc. Agron. 28. 337–351.
VILLAR, M. C., PETRIKOVA, V., D AZ-RAVIÑA, M. & CARBALLAS, T., 2004. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma 122. (2004) 73–82.
WANG, W., CHEN, W., WANG, K., XIE, X., YIN, C. & CHEN, A. 2011. Effects of Long-Term Fertilization on the Distribution of Carbon, Nitrogen and Phosphorus in Water-Stable Aggregates in Paddy Soil. Agricultural Sciences in China. 10. (12) 1932–1940.
WHALEN, J. K. & CHANG, C., 2002. Macroaggregate characteristics in cultivated soils after 25 years annual manure applications. Soil Sci. Soc. Am. J. 66. 1637–1647.
WINSOME, T. & MCCOLL, J. G., 1998. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer Eisen (Megascolecidae). Soil Biol. Biochem. 30. 1677–1687.
WRIGHT, S., STARR, J. & PALTINEAU, I., 1999. Changes in aggregate stability and concentration of glomalin during tillate management transition. Soil Sci. Soc. Am. J. 63. 1825–1829.
ZALLER, J. G. & KÖPKE, U., 2004. Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol. Fertil. Soils 40. 222–229.
ZHANG, X. C. & NORTON, L. D., 2002. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol. 260. 194–205.