Authors:
Ya. Pachepsky USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville, MD 20705, Hungary

Search for other papers by Ya. Pachepsky in
Current site
Google Scholar
PubMed
Close
,
K. Rajkai Centre for Agricultural Research, Budapest, Hungary

Search for other papers by K. Rajkai in
Current site
Google Scholar
PubMed
Close
, and
B. Tóth University of Pannonia, Keszthely, Hungary

Search for other papers by B. Tóth in
Current site
Google Scholar
PubMed
Close
Restricted access

Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships.

This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described.

Estimating parameter correlation is advocated as the pathway to the improvement of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a different type of input variables as compared with fine scales. Accuracy, reliability, and utility have to be estimated independently. Persistent knowledge gaps in pedotransfer development are outlined, which are related to regional soil degradation, seasonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydraulic properties, and overland flow parameter estimation.

Pedotransfer research is an integral part of addressing grand challenges of the twenty-first century, including carbon stock assessments and forecasts, climate change and related hydrological weather extreme event predictions, and deciphering and managing ecosystem services.

Overall, pedotransfer functions currently serve as an essential instrument in the science-based toolbox for diagnostics, monitoring, predictions, and management of the changing Earth and soil as a life-supporting Earth system.

  • Aimrun, W., & Amin, M. S. M., 2009. Pedotransfer function for saturated hydraulic conductivity of lowland paddy soils. Paddy and Water Environment. 7. (3) 217225.

    • Search Google Scholar
    • Export Citation
  • Arora, B., Mohanty, B. P. & Mcguire, J. T., 2015. An integrated Markov chain Mon-te Carlo algorithm for upscaling hydrological and geochemical parameters from column to field scale. Science of the Total Environment. 512–513. 428443.

    • Search Google Scholar
    • Export Citation
  • Babaeian, E., Homaee, M., Montzka, C., Vereecken, H. & Norouzi, A. A., 2015. Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose Zone Journal. 14. (3) doi: 10.2136/vzj2014.07.0080

    • Search Google Scholar
    • Export Citation
  • Baker, L., & Ellison, D., 2008. Optimisation of pedotransfer functions using an artifi-cial neural network ensemble method. Geoderma. 144. (1–2) 212224.

    • Search Google Scholar
    • Export Citation
  • Batjes, N. H. , 1996. Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma. 71. 3152.

    • Search Google Scholar
    • Export Citation
  • Beheydt, D., Boeckx, P., Sleutel, S., Li, C., & Van Cleemput, O., 2007. Validation of DNDC for 22 long-term N2O field emission measurements. Atmospheric Envi-ronment. 41. (29) 61966211.

    • Search Google Scholar
    • Export Citation
  • Botula, Y.-D., Nemes, A., Van Ranst, E., Mafuka, P., De Pue, J., & Cornelis, W. M., 2015. Hierarchical Pedotransfer Functions to Predict Bulk Density of Highly Weathered Soils in Central Africa. Soil Science Society of America Journal. 79. (2) 476486.

    • Search Google Scholar
    • Export Citation
  • Bouma, J. & Van Lanen, H. A. J., 1987. Transfer functions and threshold values: from soil characteristics to land qualities. In: Quantified Land Evaluation Procedures. (Eds.: Beck, K. J., Borrough, P. A. & Mccormack, D. E.) 106110. Proc. Int. Workshop Washington. ITC Publication 6. Enschende.

    • Search Google Scholar
    • Export Citation
  • Bouma, J. , 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science. 9. 177.

  • Breuer, H., Ács. F., Laza, B., Horváth, Á., Matyasovszky, I., & Rajkai, K., 2012. Sensitivity of MM5 simulated planetary boundary layer height to soil dataset: comparison of soil and atmospheric effects. Theoretical and Applied Meteorology. 109. (3–4) 577590.

    • Search Google Scholar
    • Export Citation
  • Briggs, L. J. & Shantz, H. L., 1912. The Wilting Coefficient and Its Indirect Determi-nation. Botanical Gazette. 53. (1) 2037

  • Brooks, R. H. & Corey, A. T., 1964. Hydraulic Properties of Porous Media. Hydrolog-ical Paper No. 27. Colorado State University. Fort Collins.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. , 1966. Probability laws for pore size distributions. Soil Science. 117. 311314.

  • Calzolari, C., Ungaro, F., Filippi, N., Guermandi, M., Malucelli, F., Marchi, N., & Tarocco, P., 2016. A methodological framework to assess the multiple contri-butions of soils to ecosystem services delivery at regional scale. Geoderma. 261. 190203.

    • Search Google Scholar
    • Export Citation
  • Carsel, R. F., & Parrish, R. S., 1988. Developing joint probability-distributions of soil-water retention characteristics. Water Resources Research. 24. (5) 755769.

    • Search Google Scholar
    • Export Citation
  • Carter, M. & Bentley, S. P., 1991. Correlations of Soil Properties. Pentech Press. London.

  • Chirico, G. B., Medina, H., & Romano, N., 2010. Functional evaluation of PTF pre-diction uncertainty: An application at hillslope scale. Geoderma. 155. 193202.

    • Search Google Scholar
    • Export Citation
  • Cichota, R., Vogeler, I., Snow, V. O., & Webb, T. H., 2013. Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils. Soil Research. 51. 94111.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. R., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research. 20. (6 ) 682690.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., Shangguan, W., Duan, Q., Liu, B., Fu, S., & Niu, G., 2013. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. Journal of Hydrometeorology. 14. 869887.

    • Search Google Scholar
    • Export Citation
  • Daroussin, J. & King, D., 1996. Pedotransfer rules database to interpret the Soil Geo-graphical Database of Europe for environmental purposes. In: Proc. of the Work-shop on the Use of Pedotransfer in Soil Hydrology Research in Europe. (Eds.: Bruand, A., Duval, O., Wösten, H. & Lilly, A.) 2540. Orleans, France.

    • Search Google Scholar
    • Export Citation
  • DE Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P. P., & Liu, Q., 2015. An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. Journal of Advances in Modeling Earth Systems. 6. (4) 957979.

    • Search Google Scholar
    • Export Citation
  • Deng, H., Ye, M., Schaap, M. G., & Khaleel, R., 2009. Quantification of uncertainty in pedotransfer function-based parameter estimation for unsaturated flow model-ing. Water Resources Research. 45. (4) Doi: 10.1029/2008WR007477

    • Search Google Scholar
    • Export Citation
  • Faulkner, B. R., Lyon, W.G., Khan, F.A. & Chattopadhyay, S., 2003. Modeling leaching of viruses by the Monte Carlo method. Water Research. 37. (2003) 47194729.

    • Search Google Scholar
    • Export Citation
  • Ghanbarian, B., Taslimitehrani, V., Dong, G., & Pachepsky, Ya. A., 2015. Sample dimensions effect on prediction of soil water retention curve and saturated hydrau-lic conductivity. Journal of Hydrology. 528. 127137.

    • Search Google Scholar
    • Export Citation
  • Glendining, M. J., Dailey, A. G., Powlson, D. S., Richter, G. M., Catt, J. A., & Whitmore, A. P., 2011. Pedotransfer functions for estimating total soil nitrogen up to the global scale. European Journal of Soil Science. 62. (1) 1322.

    • Search Google Scholar
    • Export Citation
  • Guber, A. K., Pachepsky, Ya. A., Van Genuchten, M. Th., Rawls, W. J., Jacques, D., Simunek, J., Cady, R. E., & Nicholson, T. J., 2005. Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention. Vadose Zone Journal. 5. 234247.

    • Search Google Scholar
    • Export Citation
  • Guber, A. K., Pachepsky, Y. A., Van Genuchten, M. Th., Simunek, J., Jacques, D., Nemes, A., Nicholson, T. J., & Cady, R. E., 2009. Multimodel simulation of wa-ter flow in a field soil using pedotransfer functions. Vadose Zone Journal. 8. (1) 110.

    • Search Google Scholar
    • Export Citation
  • Haghverdi, A., Cornelis, W. M., & Ghahraman, B., 2012. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. Journal of Hydrology. 442–443. 4654.

    • Search Google Scholar
    • Export Citation
  • Haghverdi, A., Öztürk, H. S., & Cornelis, W. M., 2014. Revisiting the pseudo con-tinuous pedotransfer function concept: Impact of data quality and data mining method. Geoderma. 226–227. 3138.

    • Search Google Scholar
    • Export Citation
  • Khodaverdiloo, H., Homaee, M., Van Genuchten M. Th., & Dashtaki, S. G., 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology. 399. (1–2) 9399.

    • Search Google Scholar
    • Export Citation
  • Klopfenstein, S. T., Hirmas, D. R., & Johnson, W. C., 2015. Relationships between soil organic carbon and precipitation along a climosequence in loess derived soils of the Central Great Plains, USA. Catena. 133. 2534.

    • Search Google Scholar
    • Export Citation
  • Kool, J. B., Albrecht, K. A., Parker, J. C. & Baker. C., 1986. Physical and chemical characterization of the Groseclose soil mapping unit. Bull. 86-4. Blacksburg, Va.: Virginia Agric. Exp. Sta., Virginia Polytechnic Institute and State Univ.

    • Search Google Scholar
    • Export Citation
  • Lai, J., & Ren, L., 2007. Assessing the size dependency of measured hydraulic conduc-tivity using double-ring infiltrometers and numerical simulation. Soil Science So-ciety of America Journal. 71. (6) 16671675.

    • Search Google Scholar
    • Export Citation
  • Lamorski, K., Pachepsky, Ya., Sławiński, C., & Walczak, R. T., 2008. Using sup-port vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science Society of America Journal. 72. (5) 12431247.

    • Search Google Scholar
    • Export Citation
  • Lamorski, K., Sławiński, C., Moreno, F., Barna, G., Skierucha, W., & Arrue, J. L., 2014. Modelling soil water retention using support vector machines with genet-ic algorithm optimisation. The Scientific World Journal. 2014. 740521.

    • Search Google Scholar
    • Export Citation
  • Leenhardt, D. , 1995. Errors in the estimation of soil water properties and their propa-gation through a hydrological model. Land Use Manage. 11. (1995) 1521.

    • Search Google Scholar
    • Export Citation
  • Leij, F. J., Alves, W. J., Van Genuchten M. Th. & Williams, J. R. 1996. The UNSODA unsaturated soil hydraulic database. User's manual version 1.0. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency. 103.

    • Search Google Scholar
    • Export Citation
  • Liao, K., Xua, F., Zheng, J., Zhu, Q., & Yang, G., 2014. Using different multimodel ensemble approaches to simulate soil moisture in a forest site with six traditional pedotransfer functions. Environmental Modelling and Software. 57. 2732.

    • Search Google Scholar
    • Export Citation
  • Lilly, A., Nemes, A., Rawls, W. J., & Pachepsky, Ya. A., 2008. Probabilistic ap-proach to the identification of input variables to estimate hydraulic conductivity. Soil Science Society of America Journal. 72. (1) 1624.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., Kumar, R. & Samaniego, L., 2015. Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin. Hydrol. Process. 29. (21) 46384655.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Tóth, B., Hernádi, H., Farkas, C., & Marth, P., 2010. Introduction of the Hungarian detailed soil hydrophysical database (MARTHA) and its use to test ex-ternal pedotransfer functions. Agrokémia és Talajtan. 59. (1) 2938.

    • Search Google Scholar
    • Export Citation
  • Martin, M. P., Lo Seen, D., Boulonne, L., Jolivet, C., Nair, K. M., Bourgeon, G., & Arrouays, D. 2009. Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. Soil Science Society of America Journal. 73. (2) 485493.

    • Search Google Scholar
    • Export Citation
  • Martinez, G., Pachepsky, Ya. A., Vereecken, H., Hardelauf, H., Herbst, M., & Vanderlinden, K., 2013. Modeling local control effects on the temporal stability of soil water content. Journal of Hydrology. 481. 106118.

    • Search Google Scholar
    • Export Citation
  • Martinez, G., Vanderlinden, K., Pachepsky, Ya., Cervera, J. V. G., & Pérez, A. J. E., 2012. Estimating topsoil water content of clay soils with data from time-lapse electrical conductivity surveys. Soil Science. 177. (6) 369376.

    • Search Google Scholar
    • Export Citation
  • Mcbratney, A. B., Minasmy, B., Cattle, S. R., & Vervoort, R. W., 2002. From pedotransfer functions to soil inference systems. Geoderma. 109. (12) 4173.

    • Search Google Scholar
    • Export Citation
  • Miller, J., Caldwell, T., Young, M., & Dalldorf, G., 2008 Verifying curve num-bers in arid environments by combining detailed geomorphic mapping and pedotransfer functions. World Environmental and Water Resources Congress. 2008. 110. doi: 10.1061/40976(316)342.

    • Search Google Scholar
    • Export Citation
  • Minasny, B., & Hartemink, A. E., 2011. Predicting soil properties in the tropics. Earth-Science Reviews. 106. (1–2) 5262.

  • Minasny, B., Mcbratney, A. B. & Bristow, K. L., 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma. 93. 225253.

    • Search Google Scholar
    • Export Citation
  • Mualem, Y. , 1976. A new model for predicting the hydraulic conductivity of unsatu-rated porous media. Water Resources Research. 12. 513522.

    • Search Google Scholar
    • Export Citation
  • Nemes, A. , 2002. Unsaturated soil hydraulic database of Hungary: HUNSODA. Multi-scale hydraulic pedotransfer functions for Hungarian soils.

    • Search Google Scholar
    • Export Citation
  • Nemes, A., Quebedeaux, B., & Timlin, D. J., 2010. Ensemble approach to provide uncertainty estimates of soil bulk density. Soil Science Society of America Jour-nal. 74. (6) 19381945.

    • Search Google Scholar
    • Export Citation
  • Nemes, A., Rawls, W. J., & Pachepsky, Ya. A., 2006. Use of k-nearest neighbor algo-rithms to estimate soil hydraulic properties. Soil Science Society of America Jour-nal. 70. 327.

    • Search Google Scholar
    • Export Citation
  • Nemes, A., Schaap, M. G., Leij, F. J., & Wösten, J. H. M., 2001. Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of Hydrology. 251. (34) 151162.

    • Search Google Scholar
    • Export Citation
  • Neuman, S. P., & Wierenga, P., 2003. A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805. U.S. Nuclear Regulatory Commission. Washington, DC. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6805/

    • Search Google Scholar
    • Export Citation
  • Pachepsky, Ya. A. & Rawls, W. J. (Eds.), 2004. Development of Pedotransfer Func-tions in Soil Hydrology. Developments in Soil Science. 30. Elsevier. Amsterdam.

    • Search Google Scholar
    • Export Citation
  • Pachepsky, Ya., Gish, T., Guber, A. K., Yakirevich, A. M., Kuznetsov, M. K., Van Genuchten, M. T., Nicholson, T. J., & Cady, R. E., 2011. Application of model abstraction techniques to simulate transport in soils. NUREG/CR-7026. U. S. Nu-clear Regulatory Commission. Washington, D.C. 252. 2011. Available at http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7026/

    • Search Google Scholar
    • Export Citation
  • Pachepsky, Ya. A., Guber, A. K., Yakirevich, A. M., Mckee, L., Cady, R. E., & Nicholson, T. J., 2014. Scaling and pedotransfer in numerical simulations of flow and transport in soils. Vadose Zone Journal. 13. (12) doi:10.2136/vzj2014.02.0020

    • Search Google Scholar
    • Export Citation
  • Pachepsky, Ya. A., & Rawls, W. J., 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of America Journal. 63. 17481757.

    • Search Google Scholar
    • Export Citation
  • Pachepsky, Ya. A., Mironenko, E. V., & Shcherbakov, R. A., 1992. Prediction and use of soil hydraulic properties. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. (Eds.: Van Genuchten, M. Th, Leij, F. J., & Lund, L. J.) 203212. Proceedings of the International Workshop. October, 1113, 1989. University of California. Riverside.

    • Search Google Scholar
    • Export Citation
  • Pachepsky, Ya. A., Rawls, W. J., & Timlin, D. J., 1999. The current status of pedotransfer functions: their accuracy, reliability, and utility in field- and regional-scale modeling, In: Assessment of Non-Point Source Pollution in the Vadose Zone. (Eds.: Corwin, D. L., Loague & Ellsworth, T. R.) 223234. Geophys-ical Monograph 108. American Geophysical Union. Washington, D.C.

    • Search Google Scholar
    • Export Citation
  • Palm, C., Sanchez, P. Ahamed, S., & Awiti, A., 2007. Soils: A contemporary per-spective. Annual Review of Environment and Resources. 32. 99129.

    • Search Google Scholar
    • Export Citation
  • Pan, F., Pachepsky, Ya., Jacques, D., Guber, A., & Hill, R. L., 2012. Data assimila-tion with soil water content sensors and pedotransfer functions in soil water flow modeling. Soil Science Society of America Journal. 76. (3) 829844.

    • Search Google Scholar
    • Export Citation
  • Qu, W., Bogena, H. R., Huisman, J. A., Martinez, G., Pachepsky, Ya. A, & Vereecken, H., 2014. Effects of soil hydraulic properties on the spatial variability of soil water content: evidence from sensor network data and inverse modeling Vadose Zone Journal. 13. (12) 112. doi: 10.2136/vzj2014.07.0099

    • Search Google Scholar
    • Export Citation
  • Qu, W., Bogena, H. R., Huisman, J. A., Vanderborght, J., Schuh, M., Priesack, E., & Vereecken, H., 2015. Predicting subgrid variability of soil water content from basic soil information Geophysical Research Letters. 42. (3) 789796. doi: 10.1002/2014GL062496

    • Search Google Scholar
    • Export Citation
  • Rajkai, K. , 1988. The relationship between water retention and different soil properties (in Hungarian). Agrokémia és Talajtan. 36–37. 1530.)

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Brakensiek, D. L., & Saxton, K. E., 1982. Estimation of soil-water properties. Transactions of the ASAE. 25. (5) 13161328.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Gish, T. J., & Brakensiek, D. L., 1991. Estimating soil water retention from soil physical properties and characteristics. Advances in Soil Science. 16. 213.

    • Search Google Scholar
    • Export Citation
  • Rawls, W.J., Gimenez, D., & Grossman, R., 1998. Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the ASAE. 41. 983988.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., & Pachepsky, Y. A., 2002. Using field topographic descriptors to esti-mate soil water retention. Soil Science. 167. (7) 423435.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Nemes, A., Pachepsky, Ya. A., & Saxton, K. E., 2007. Using the NRCS National Soils Information System (NASIS) to provide soil hydraulic prop-erties for engineering applications. Transactions of the ASAE. 50.(5) 17151718.

    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., Leij, F. J., & Van Genuchten, M. Th., 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology. 251. (3–4) 163176.

    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., Leij, F. J., & van Genuchten, M. Th., 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal. 62. (4) 847855.

    • Search Google Scholar
    • Export Citation
  • Schrumpf, M., Schulze, E. D., Kaiser, K., & Schumacher, J., 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discussions. 8. (1) 723769.

    • Search Google Scholar
    • Export Citation
  • Sequeira, C. H., Wills, S. A., Seybold, C. A., & West, L. T., 2014. Predicting soil bulk density for incomplete databases. Geoderma. 213. 6473.

    • Search Google Scholar
    • Export Citation
  • Sinowski, W., Scheinost, A. C., & Auerswald, K., 1997. Regionalization of soil water retention curves in a highly variable soilscape, II. Comparison of regionali-zation procedures using a pedotransfer function Geoderma. 78. (3–4) 145159.

    • Search Google Scholar
    • Export Citation
  • Timlin, D. J., Ahuja, L. R., & Williams, R. D., 1996. Methods to estimate soil hydrau-lic parameters for regional scale applications of mechanistic models, In: Applica-tion of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone. American Society of Agronomy. SSSA Special publication. Madison. 185203.

    • Search Google Scholar
    • Export Citation
  • Timlin, D. J., Ahuja, L. R., Pachepsky, Y., Williams, R. D., Gimenez, D., & Rawls, W., 1999. Use of BrooksCorey parameters to improve estimates of saturated con-ductivity from effective porosity. Soil Science Society of America Journal. 63. (5) 10861092.

    • Search Google Scholar
    • Export Citation
  • Tóth, B., Makó,A., Guadagnini, A., & Tóth, G., 2012. Water retention of salt affect-ed soils: quantitative estimation using soil survey information. Arid Land Research and Management. 26. 103121.

    • Search Google Scholar
    • Export Citation
  • Tóth, B., Makó, A., & Tóth, G., 2014. Role of soil properties in water retention char-acteristics of main Hungarian soil types. Journal of Central European Agriculture. 15. (2) 137153.

    • Search Google Scholar
    • Export Citation
  • Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. & Tóth, G., 2015. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science. 66. 226238.

    • Search Google Scholar
    • Export Citation
  • Ugbaje, S. U., & Reuter, H. I., 2013. Functional digital soil mapping for the prediction of available water capacity in Nigeria using legacy data. Vadose Zone Journal. 12. doi:10.2136/vzj2013.07.0140.

    • Search Google Scholar
    • Export Citation
  • Van De Giesen, N., Stomph, T., Ajayi, E. A., & Bagayoko, F., 2011. Scale effects in hortonian surface runoff on agricultural slopes in West Africa: field data and mod-els. Agriculture, Ecosystems & Environment. 142. (1–2) 95101.

    • Search Google Scholar
    • Export Citation
  • Van Genuchten, M. TH. , 1980. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44. 892898.

    • Search Google Scholar
    • Export Citation
  • Van Genuchten, M. Th., & Leij, F., 1992. On estimating the hydraulic properties of unsaturated soils. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. (Eds.: Van Genuchten, M. T., Leij, F. J., And Lund, L. J.) 114. University of California. Riverside.

    • Search Google Scholar
    • Export Citation
  • Vepraskas, M. J., & Williams, J. P., 1995. Hydraulic conductivity of saprolite as a function of sample dimensions and measurement technique. Soil Science Society of America Journal. 59. 975981

    • Search Google Scholar
    • Export Citation
  • Vereecken, H., Maes, J., & Feyen, J., 1990. Estimating unsaturated hydraulic conduc-tivity from easily measured soil properties. Soil Science. 149. (1) 112.

    • Search Google Scholar
    • Export Citation
  • Vereecken, H., Maes, J., Feyen, J., & Darius, P., 1989. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci-ence. 148. (6) 389403.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Yen, H., Jeong, J., & Williams, J. R., 2015. Accounting for conceptual soil erosion and sediment yield modeling uncertainty in the APEX model using Bayes-ian model averaging. Journal of Hydrologic Engineering. 20. (6) art. no. C4014010

    • Search Google Scholar
    • Export Citation
  • Weihermueller, L., Graf, A., Herbst, M., & Vereecken, H., 2013. Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. Eu-ropean Journal of Soil Science. 64. (5) 567575.

    • Search Google Scholar
    • Export Citation
  • Werban, U., Dietrich, P., Bartholomeus, H., Grandjean, G., & Zacharias, S., 2013. Digital soil mapping: Approaches to integrate sensing techniques to the prediction of key soil properties. Vadose Zone J. 12. doi:10.2136/vzj2013.10.0178.

    • Search Google Scholar
    • Export Citation
  • Weynants, M., Montanarella, L., Tóth, G., et al., 2013. European HYdropedological Data Inventory (EU-HYDI). Luxembourg: EUR – Scientific and Technical Research Series – ISSN 1831-9424, doi: 10.2788/5936.

    • Search Google Scholar
    • Export Citation
  • Wösten, J. H. M., & Van Genuchten, M. Th., 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Science Society of America Journal. 52. (6) 17621770.

    • Search Google Scholar
    • Export Citation
  • Wösten, J. H. M., Pachepsky, Ya. A. & Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic char-acteristics. Journal of Hydrology. 251. 123150.

    • Search Google Scholar
    • Export Citation
  • Wösten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169185.

    • Search Google Scholar
    • Export Citation
  • Wuest, S. B. , 2015. Seasonal variation in soil bulk density, organic nitrogen, available phosphorus, and pH. Soil Science Society of America Journal., 79. (4) 11881197.

    • Search Google Scholar
    • Export Citation
  • Zobeck, T. M., Fausey, N. R., & Al-Hamden, N. S., 1985. Effect of sample cross-section area on saturated hydraulic conductivity in two structured soils. Transactions of the ASAE. 28. (3) 791794.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2023 6 0 0
May 2023 37 0 1
Jun 2023 9 0 0
Jul 2023 14 0 0
Aug 2023 29 1 1
Sep 2023 28 0 0
Oct 2023 0 0 0