Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships.
This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described.
Estimating parameter correlation is advocated as the pathway to the improvement of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a different type of input variables as compared with fine scales. Accuracy, reliability, and utility have to be estimated independently. Persistent knowledge gaps in pedotransfer development are outlined, which are related to regional soil degradation, seasonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydraulic properties, and overland flow parameter estimation.
Pedotransfer research is an integral part of addressing grand challenges of the twenty-first century, including carbon stock assessments and forecasts, climate change and related hydrological weather extreme event predictions, and deciphering and managing ecosystem services.
Overall, pedotransfer functions currently serve as an essential instrument in the science-based toolbox for diagnostics, monitoring, predictions, and management of the changing Earth and soil as a life-supporting Earth system.
Aimrun, W., & Amin, M. S. M., 2009. Pedotransfer function for saturated hydraulic conductivity of lowland paddy soils. Paddy and Water Environment. 7. (3) 217–225.
Arora, B., Mohanty, B. P. & Mcguire, J. T., 2015. An integrated Markov chain Mon-te Carlo algorithm for upscaling hydrological and geochemical parameters from column to field scale. Science of the Total Environment. 512–513. 428–443.
Babaeian, E., Homaee, M., Montzka, C., Vereecken, H. & Norouzi, A. A., 2015. Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose Zone Journal. 14. (3) doi: 10.2136/vzj2014.07.0080
Baker, L., & Ellison, D., 2008. Optimisation of pedotransfer functions using an artifi-cial neural network ensemble method. Geoderma. 144. (1–2) 212–224.
Batjes, N. H. , 1996. Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma. 71. 31–52.
Beheydt, D., Boeckx, P., Sleutel, S., Li, C., & Van Cleemput, O., 2007. Validation of DNDC for 22 long-term N2O field emission measurements. Atmospheric Envi-ronment. 41. (29) 6196–6211.
Botula, Y.-D., Nemes, A., Van Ranst, E., Mafuka, P., De Pue, J., & Cornelis, W. M., 2015. Hierarchical Pedotransfer Functions to Predict Bulk Density of Highly Weathered Soils in Central Africa. Soil Science Society of America Journal. 79. (2) 476–486.
Bouma, J. & Van Lanen, H. A. J., 1987. Transfer functions and threshold values: from soil characteristics to land qualities. In: Quantified Land Evaluation Procedures. (Eds.: Beck, K. J., Borrough, P. A. & Mccormack, D. E.) 106–110. Proc. Int. Workshop Washington. ITC Publication 6. Enschende.
Bouma, J. , 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science. 9. 177.
Breuer, H., Ács. F., Laza, B., Horváth, Á., Matyasovszky, I., & Rajkai, K., 2012. Sensitivity of MM5 simulated planetary boundary layer height to soil dataset: comparison of soil and atmospheric effects. Theoretical and Applied Meteorology. 109. (3–4) 577–590.
Briggs, L. J. & Shantz, H. L., 1912. The Wilting Coefficient and Its Indirect Determi-nation. Botanical Gazette. 53. (1) 20–37
Brooks, R. H. & Corey, A. T., 1964. Hydraulic Properties of Porous Media. Hydrolog-ical Paper No. 27. Colorado State University. Fort Collins.
Brutsaert, W. , 1966. Probability laws for pore size distributions. Soil Science. 117. 311–314.
Calzolari, C., Ungaro, F., Filippi, N., Guermandi, M., Malucelli, F., Marchi, N., & Tarocco, P., 2016. A methodological framework to assess the multiple contri-butions of soils to ecosystem services delivery at regional scale. Geoderma. 261. 190–203.
Carsel, R. F., & Parrish, R. S., 1988. Developing joint probability-distributions of soil-water retention characteristics. Water Resources Research. 24. (5) 755–769.
Carter, M. & Bentley, S. P., 1991. Correlations of Soil Properties. Pentech Press. London.
Chirico, G. B., Medina, H., & Romano, N., 2010. Functional evaluation of PTF pre-diction uncertainty: An application at hillslope scale. Geoderma. 155. 193–202.
Cichota, R., Vogeler, I., Snow, V. O., & Webb, T. H., 2013. Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils. Soil Research. 51. 94–111.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. R., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research. 20. (6 ) 682–690.
Dai, Y., Shangguan, W., Duan, Q., Liu, B., Fu, S., & Niu, G., 2013. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. Journal of Hydrometeorology. 14. 869–887.
Daroussin, J. & King, D., 1996. Pedotransfer rules database to interpret the Soil Geo-graphical Database of Europe for environmental purposes. In: Proc. of the Work-shop on the Use of Pedotransfer in Soil Hydrology Research in Europe. (Eds.: Bruand, A., Duval, O., Wösten, H. & Lilly, A.) 25–40. Orleans, France.
DE Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P. P., & Liu, Q., 2015. An updated treatment of soil texture and associated hydraulic properties in a global land modeling system. Journal of Advances in Modeling Earth Systems. 6. (4) 957–979.
Deng, H., Ye, M., Schaap, M. G., & Khaleel, R., 2009. Quantification of uncertainty in pedotransfer function-based parameter estimation for unsaturated flow model-ing. Water Resources Research. 45. (4) Doi: 10.1029/2008WR007477
Faulkner, B. R., Lyon, W.G., Khan, F.A. & Chattopadhyay, S., 2003. Modeling leaching of viruses by the Monte Carlo method. Water Research. 37. (2003) 4719–4729.
Ghanbarian, B., Taslimitehrani, V., Dong, G., & Pachepsky, Ya. A., 2015. Sample dimensions effect on prediction of soil water retention curve and saturated hydrau-lic conductivity. Journal of Hydrology. 528. 127–137.
Glendining, M. J., Dailey, A. G., Powlson, D. S., Richter, G. M., Catt, J. A., & Whitmore, A. P., 2011. Pedotransfer functions for estimating total soil nitrogen up to the global scale. European Journal of Soil Science. 62. (1) 13–22.
Guber, A. K., Pachepsky, Ya. A., Van Genuchten, M. Th., Rawls, W. J., Jacques, D., Simunek, J., Cady, R. E., & Nicholson, T. J., 2005. Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention. Vadose Zone Journal. 5. 234–247.
Guber, A. K., Pachepsky, Y. A., Van Genuchten, M. Th., Simunek, J., Jacques, D., Nemes, A., Nicholson, T. J., & Cady, R. E., 2009. Multimodel simulation of wa-ter flow in a field soil using pedotransfer functions. Vadose Zone Journal. 8. (1) 1–10.
Haghverdi, A., Cornelis, W. M., & Ghahraman, B., 2012. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. Journal of Hydrology. 442–443. 46–54.
Haghverdi, A., Öztürk, H. S., & Cornelis, W. M., 2014. Revisiting the pseudo con-tinuous pedotransfer function concept: Impact of data quality and data mining method. Geoderma. 226–227. 31–38.
Khodaverdiloo, H., Homaee, M., Van Genuchten M. Th., & Dashtaki, S. G., 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology. 399. (1–2) 93–99.
Klopfenstein, S. T., Hirmas, D. R., & Johnson, W. C., 2015. Relationships between soil organic carbon and precipitation along a climosequence in loess derived soils of the Central Great Plains, USA. Catena. 133. 25–34.
Kool, J. B., Albrecht, K. A., Parker, J. C. & Baker. C., 1986. Physical and chemical characterization of the Groseclose soil mapping unit. Bull. 86-4. Blacksburg, Va.: Virginia Agric. Exp. Sta., Virginia Polytechnic Institute and State Univ.
Lai, J., & Ren, L., 2007. Assessing the size dependency of measured hydraulic conduc-tivity using double-ring infiltrometers and numerical simulation. Soil Science So-ciety of America Journal. 71. (6) 1667–1675.
Lamorski, K., Pachepsky, Ya., Sławiński, C., & Walczak, R. T., 2008. Using sup-port vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science Society of America Journal. 72. (5) 1243–1247.
Lamorski, K., Sławiński, C., Moreno, F., Barna, G., Skierucha, W., & Arrue, J. L., 2014. Modelling soil water retention using support vector machines with genet-ic algorithm optimisation. The Scientific World Journal. 2014. 740521.
Leenhardt, D. , 1995. Errors in the estimation of soil water properties and their propa-gation through a hydrological model. Land Use Manage. 11. (1995) 15–21.
Leij, F. J., Alves, W. J., Van Genuchten M. Th. & Williams, J. R. 1996. The UNSODA unsaturated soil hydraulic database. User's manual version 1.0. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency. 103.
Liao, K., Xua, F., Zheng, J., Zhu, Q., & Yang, G., 2014. Using different multimodel ensemble approaches to simulate soil moisture in a forest site with six traditional pedotransfer functions. Environmental Modelling and Software. 57. 27–32.
Lilly, A., Nemes, A., Rawls, W. J., & Pachepsky, Ya. A., 2008. Probabilistic ap-proach to the identification of input variables to estimate hydraulic conductivity. Soil Science Society of America Journal. 72. (1) 16–24.
Livneh, B., Kumar, R. & Samaniego, L., 2015. Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin. Hydrol. Process. 29. (21) 4638–4655.
Makó, A., Tóth, B., Hernádi, H., Farkas, C., & Marth, P., 2010. Introduction of the Hungarian detailed soil hydrophysical database (MARTHA) and its use to test ex-ternal pedotransfer functions. Agrokémia és Talajtan. 59. (1) 29–38.
Martin, M. P., Lo Seen, D., Boulonne, L., Jolivet, C., Nair, K. M., Bourgeon, G., & Arrouays, D. 2009. Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. Soil Science Society of America Journal. 73. (2) 485–493.
Martinez, G., Pachepsky, Ya. A., Vereecken, H., Hardelauf, H., Herbst, M., & Vanderlinden, K., 2013. Modeling local control effects on the temporal stability of soil water content. Journal of Hydrology. 481. 106–118.
Martinez, G., Vanderlinden, K., Pachepsky, Ya., Cervera, J. V. G., & Pérez, A. J. E., 2012. Estimating topsoil water content of clay soils with data from time-lapse electrical conductivity surveys. Soil Science. 177. (6) 369–376.
Mcbratney, A. B., Minasmy, B., Cattle, S. R., & Vervoort, R. W., 2002. From pedotransfer functions to soil inference systems. Geoderma. 109. (12) 41–73.
Miller, J., Caldwell, T., Young, M., & Dalldorf, G., 2008 Verifying curve num-bers in arid environments by combining detailed geomorphic mapping and pedotransfer functions. World Environmental and Water Resources Congress. 2008. 1–10. doi: 10.1061/40976(316)342.
Minasny, B., & Hartemink, A. E., 2011. Predicting soil properties in the tropics. Earth-Science Reviews. 106. (1–2) 52–62.
Minasny, B., Mcbratney, A. B. & Bristow, K. L., 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma. 93. 225–253.
Mualem, Y. , 1976. A new model for predicting the hydraulic conductivity of unsatu-rated porous media. Water Resources Research. 12. 513–522.
Nemes, A. , 2002. Unsaturated soil hydraulic database of Hungary: HUNSODA. Multi-scale hydraulic pedotransfer functions for Hungarian soils.
Nemes, A., Quebedeaux, B., & Timlin, D. J., 2010. Ensemble approach to provide uncertainty estimates of soil bulk density. Soil Science Society of America Jour-nal. 74. (6) 1938–1945.
Nemes, A., Rawls, W. J., & Pachepsky, Ya. A., 2006. Use of k-nearest neighbor algo-rithms to estimate soil hydraulic properties. Soil Science Society of America Jour-nal. 70. 327.
Nemes, A., Schaap, M. G., Leij, F. J., & Wösten, J. H. M., 2001. Description of the unsaturated soil hydraulic database UNSODA version 2.0. Journal of Hydrology. 251. (34) 151–162.
Neuman, S. P., & Wierenga, P., 2003. A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805. U.S. Nuclear Regulatory Commission. Washington, DC. Available at: http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6805/
Pachepsky, Ya. A. & Rawls, W. J. (Eds.), 2004. Development of Pedotransfer Func-tions in Soil Hydrology. Developments in Soil Science. 30. Elsevier. Amsterdam.
Pachepsky, Ya., Gish, T., Guber, A. K., Yakirevich, A. M., Kuznetsov, M. K., Van Genuchten, M. T., Nicholson, T. J., & Cady, R. E., 2011. Application of model abstraction techniques to simulate transport in soils. NUREG/CR-7026. U. S. Nu-clear Regulatory Commission. Washington, D.C. 252. 2011. Available at http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7026/
Pachepsky, Ya. A., Guber, A. K., Yakirevich, A. M., Mckee, L., Cady, R. E., & Nicholson, T. J., 2014. Scaling and pedotransfer in numerical simulations of flow and transport in soils. Vadose Zone Journal. 13. (12) doi:10.2136/vzj2014.02.0020
Pachepsky, Ya. A., & Rawls, W. J., 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of America Journal. 63. 1748–1757.
Pachepsky, Ya. A., Mironenko, E. V., & Shcherbakov, R. A., 1992. Prediction and use of soil hydraulic properties. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. (Eds.: Van Genuchten, M. Th, Leij, F. J., & Lund, L. J.) 203–212. Proceedings of the International Workshop. October, 11–13, 1989. University of California. Riverside.
Pachepsky, Ya. A., Rawls, W. J., & Timlin, D. J., 1999. The current status of pedotransfer functions: their accuracy, reliability, and utility in field- and regional-scale modeling, In: Assessment of Non-Point Source Pollution in the Vadose Zone. (Eds.: Corwin, D. L., Loague & Ellsworth, T. R.) 223–234. Geophys-ical Monograph 108. American Geophysical Union. Washington, D.C.
Palm, C., Sanchez, P. Ahamed, S., & Awiti, A., 2007. Soils: A contemporary per-spective. Annual Review of Environment and Resources. 32. 99–129.
Pan, F., Pachepsky, Ya., Jacques, D., Guber, A., & Hill, R. L., 2012. Data assimila-tion with soil water content sensors and pedotransfer functions in soil water flow modeling. Soil Science Society of America Journal. 76. (3) 829–844.
Qu, W., Bogena, H. R., Huisman, J. A., Martinez, G., Pachepsky, Ya. A, & Vereecken, H., 2014. Effects of soil hydraulic properties on the spatial variability of soil water content: evidence from sensor network data and inverse modeling Vadose Zone Journal. 13. (12) 112. doi: 10.2136/vzj2014.07.0099
Qu, W., Bogena, H. R., Huisman, J. A., Vanderborght, J., Schuh, M., Priesack, E., & Vereecken, H., 2015. Predicting subgrid variability of soil water content from basic soil information Geophysical Research Letters. 42. (3) 789796. doi: 10.1002/2014GL062496
Rajkai, K. , 1988. The relationship between water retention and different soil properties (in Hungarian). Agrokémia és Talajtan. 36–37. 15–30.)
Rawls, W. J., Brakensiek, D. L., & Saxton, K. E., 1982. Estimation of soil-water properties. Transactions of the ASAE. 25. (5) 1316–1328.
Rawls, W. J., Gish, T. J., & Brakensiek, D. L., 1991. Estimating soil water retention from soil physical properties and characteristics. Advances in Soil Science. 16. 213.
Rawls, W.J., Gimenez, D., & Grossman, R., 1998. Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the ASAE. 41. 983–988.
Rawls, W. J., & Pachepsky, Y. A., 2002. Using field topographic descriptors to esti-mate soil water retention. Soil Science. 167. (7) 423–435.
Rawls, W. J., Nemes, A., Pachepsky, Ya. A., & Saxton, K. E., 2007. Using the NRCS National Soils Information System (NASIS) to provide soil hydraulic prop-erties for engineering applications. Transactions of the ASAE. 50.(5) 1715–1718.
Schaap, M. G., Leij, F. J., & Van Genuchten, M. Th., 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology. 251. (3–4) 163–176.
Schaap, M. G., Leij, F. J., & van Genuchten, M. Th., 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal. 62. (4) 847–855.
Schrumpf, M., Schulze, E. D., Kaiser, K., & Schumacher, J., 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discussions. 8. (1) 723–769.
Sequeira, C. H., Wills, S. A., Seybold, C. A., & West, L. T., 2014. Predicting soil bulk density for incomplete databases. Geoderma. 213. 64–73.
Sinowski, W., Scheinost, A. C., & Auerswald, K., 1997. Regionalization of soil water retention curves in a highly variable soilscape, II. Comparison of regionali-zation procedures using a pedotransfer function Geoderma. 78. (3–4) 145–159.
Timlin, D. J., Ahuja, L. R., & Williams, R. D., 1996. Methods to estimate soil hydrau-lic parameters for regional scale applications of mechanistic models, In: Applica-tion of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone. American Society of Agronomy. SSSA Special publication. Madison. 185–203.
Timlin, D. J., Ahuja, L. R., Pachepsky, Y., Williams, R. D., Gimenez, D., & Rawls, W., 1999. Use of BrooksCorey parameters to improve estimates of saturated con-ductivity from effective porosity. Soil Science Society of America Journal. 63. (5) 10861092.
Tóth, B., Makó,A., Guadagnini, A., & Tóth, G., 2012. Water retention of salt affect-ed soils: quantitative estimation using soil survey information. Arid Land Research and Management. 26. 103–121.
Tóth, B., Makó, A., & Tóth, G., 2014. Role of soil properties in water retention char-acteristics of main Hungarian soil types. Journal of Central European Agriculture. 15. (2) 137–153.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. & Tóth, G., 2015. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science. 66. 226–238.
Ugbaje, S. U., & Reuter, H. I., 2013. Functional digital soil mapping for the prediction of available water capacity in Nigeria using legacy data. Vadose Zone Journal. 12. doi:10.2136/vzj2013.07.0140.
Van De Giesen, N., Stomph, T., Ajayi, E. A., & Bagayoko, F., 2011. Scale effects in hortonian surface runoff on agricultural slopes in West Africa: field data and mod-els. Agriculture, Ecosystems & Environment. 142. (1–2) 95–101.
Van Genuchten, M. TH. , 1980. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44. 892–898.
Van Genuchten, M. Th., & Leij, F., 1992. On estimating the hydraulic properties of unsaturated soils. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. (Eds.: Van Genuchten, M. T., Leij, F. J., And Lund, L. J.) 1–14. University of California. Riverside.
Vepraskas, M. J., & Williams, J. P., 1995. Hydraulic conductivity of saprolite as a function of sample dimensions and measurement technique. Soil Science Society of America Journal. 59. 975–981
Vereecken, H., Maes, J., & Feyen, J., 1990. Estimating unsaturated hydraulic conduc-tivity from easily measured soil properties. Soil Science. 149. (1) 112.
Vereecken, H., Maes, J., Feyen, J., & Darius, P., 1989. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci-ence. 148. (6) 389–403.
Wang, X., Yen, H., Jeong, J., & Williams, J. R., 2015. Accounting for conceptual soil erosion and sediment yield modeling uncertainty in the APEX model using Bayes-ian model averaging. Journal of Hydrologic Engineering. 20. (6) art. no. C4014010
Weihermueller, L., Graf, A., Herbst, M., & Vereecken, H., 2013. Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. Eu-ropean Journal of Soil Science. 64. (5) 567–575.
Werban, U., Dietrich, P., Bartholomeus, H., Grandjean, G., & Zacharias, S., 2013. Digital soil mapping: Approaches to integrate sensing techniques to the prediction of key soil properties. Vadose Zone J. 12. doi:10.2136/vzj2013.10.0178.
Weynants, M., Montanarella, L., Tóth, G., et al., 2013. European HYdropedological Data Inventory (EU-HYDI). Luxembourg: EUR – Scientific and Technical Research Series – ISSN 1831-9424, doi: 10.2788/5936.
Wösten, J. H. M., & Van Genuchten, M. Th., 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Science Society of America Journal. 52. (6) 1762–1770.
Wösten, J. H. M., Pachepsky, Ya. A. & Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic char-acteristics. Journal of Hydrology. 251. 123–150.
Wösten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169–185.
Wuest, S. B. , 2015. Seasonal variation in soil bulk density, organic nitrogen, available phosphorus, and pH. Soil Science Society of America Journal., 79. (4) 1188–1197.
Zobeck, T. M., Fausey, N. R., & Al-Hamden, N. S., 1985. Effect of sample cross-section area on saturated hydraulic conductivity in two structured soils. Transactions of the ASAE. 28. (3) 791–794.