A bemutatott tanulmányok alátámasztják MCBRATNEY és ODEH (1997), valamint JETTER és KOK (2014) összegzését, akik a fuzzy modellezés jelenlegi helyzetének részletes értékelése során kifejtették, hogy a fuzzy rendszerek és modellek a jövő fontos kutatási eszközei lehetnek. A „lágy” számítási módszerek a talaj- az, agrár- és a környezettudományok területén egyre nagyobb teret hódítanak meg. Nagy előnyt jelent a bizonytalan, nem vagy nehezen számszerűsíthető adatok használatának és a határvonalak nem éles, kategóriánként eltérő kijelölésének lehetősége. Megfelelő matematikai és interdiszciplináris kutatói hátteret feltételezve egyszerű, gyors és olcsó módszer, amely a hagyományos eljárásoknál pontosabb, és a laikusok által is értelmezhető eredményeket szolgáltat.
AGROTOPO Adatbázis, 1991: http://maps.rissac.hu/agrotopo_hu/
Akyurek, Z. & Okalp, K. 2006. A fuzzy-based tool for spatial reasoning: A Case study on soil erosion hazard prediction, In: 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Edited by: M. Caetano and M. Painho.
Amini, M. Afyuni, M. Fathianpour, N. Khademi, H. Flühler, H. 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124. pp. 223–333.
Assimakopoulos, J.H. Kalivas, D. P. Kollias, V.J. 2003. A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use. The Science of the Total Environment. 309. pp. 19–33.
Astel, A. 2007. Chemometrics based on fuzzy logic principles in environmental studies. Talanta. 72. pp. 1–12.
Bárdossy, A. & Duckstein, L. 1995. Fuzzy rule-based modelling with applications to geophysical. Biological and Engineering Systems. CRC Press. New York. 113 pp.
Bárdossy, A. Bogardi, I. Kelly, W. E. , 1990a. Kriging with imprecise (fuzzy) variogram, Part I. Mathematical geoscinces theory methods and applications. 22. 63–79.
Bárdossy, A. Bogardi, I. Kelly, W. E. , 1990 b. Kriging with imprecise (fuzzy) variogram, Part II. Mathematical geoscinces theory methods and applications. 22. 81–94.
Bezdek, C. J. Ehrlich, R. Full, W. 1984. FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences. Volume 10. Issues 2-3. pp. 191–203.
Bezdek, J. C. 1981. Pattern recognition wit fuzzy objective function algorithms. Plenum, New York.
Bezdek, J.C. Keller, J. Krisnapuram, R. Pal, N.R. 1999. Fuzzy models and algorithms for pattern recognition and image processing. Kluwer Academy Publishers. Boston.
Bloch, I. & Maitre, H. 1995. Fuzzy mathematical morphologies: A comparative study. Pattern Recognition, Vol 28., No. 9., pp. 1341–1387.
Borelli, P. Panagos, P. Ballabio, C. Lugato, E. Weynants, M. Montanarella, L. 2014. Towards a Pan-European assessment of land susceptibility to wind erosion. Land Degradation & Development. DOI: 10.1002/ldr.2318
Bragato, G. 2004. Fuzzy continous classification and spatial interpolation in conventional soil survey for soil mapping of the lower Piawe plain. Geoderma. 118. pp. 1–16.
Burrough, P. A. 1986. Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford,194 pp.
Burrough, P.A. 1989. Fuzzy mathematic methods for soil survey and land evaluation. Journal of Soil Scince. 40. 447–492.
Callott, Y. Marticorena, B. Bergametti, G. 2000. Geomorphologic approach for modeling the surface features of arid environments in a model of dust emissions: application to the Sahara Desert. Geodinamica Acta. 13. (5). pp. 245–270.
Camarinha, P.I.M. Trannin, I.C.B. Simoes, S.JC. Bernardes, G.P. 2011. Fuzzy logic and geostatistical techniques for spatialization of soil texture in region with rough terrains. Procedia Environmental Sciences. 7. pp. 347–352.
Caniani, D. Lioi, D. S. Mancini, I. M. Masi, S. 2011. Application of fuzzy logic and sensitivity analysis for soil contamination hazard classification. Waste Management, 31. pp. 583–594.
Carlson, N. T. & Ripley, A. D. 1997. Ont he relation between NDVI, fractional vegetation factor, and leaf area index. Remote Sensing of Environment. 62. (3). pp. 241–252.
Cohen, S. Svoray, T. Laronne, B. J. Alexandrov, Y. 2008. Fuzzy-based dynamic soil erosion model (FuDSEM): Modelling approach and preliminary evaluation. Journal of Hydrology. 356. pp. 185–198.
Cornelissen, A. M. G. Berg, J. Koops, W.J. Grossmann, M. Udo, H.M.J. 2001. Assessment of the contribution of sustainability indicators to sustainable development: a novel approach using fuzzy set theory. Agriculture, Ecosystems and Environment 86. pp. 173–185.
Daniell, T. M. 1991. Neural networks – application in hydrology and water resources engineering. In: Proceedings of International Hydrology and Water Resources Symposium. Perth. Australia. pp. 791–802.
Davatgar, N. Neishabouri, M.R. Sepaskah, A.R. 2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma. 173-174. pp. 111–118.
Delcourt, H. R. & Delcourt, P. A. 1988. Quaternary landscape ecology: Relevant scales in space and time. Landscape Ecol. 2. 23–44.
Demirel, T. & Tüzün, S. 2011. Multi criteria evaluation of the methods for preventing soil erosion using fuzzy ANP: the case of Turkey. Proceedings of the World Congress on Engineering 2011. Vol. II. WCE 2011, July. 6-8. 2011. London. U.K.
Dobermann, A. & Oberthür, T. 1997. Fuzzy mapping of soil fertility – a case study on irrigated riceland int he Phillipines. Geoderma. 77. pp. 317–339.
Dombi, J. 1988. Membership function as an evaluation, Fuzzy Sets and Systems 35. (1990) 1–21., North-Holland.
Dombi, J. 1990. Membership function as an evaluation. Fuzzy sets systems. 35. pp. 1–21.
Eastman, J. R., Kyem, P. A. K., Toledano, J. Jin, W. 1993. GIS and decision making, Explorations in Geographical Information System Technology. Unitar. Genova. 4.
Enea, M. & Salemi, G. 2001. Fuzzy approach to the environmental impact evaluation. Ecological Modelling. 135. pp. 131–147.
European Environment Agency. 2006: CORINE Land Cover Technical Guide: Addendum, EEA, Copenhagen.
FAO 1976. A framework for land evaluation. Soils Bulletin 32. FAO, Rome,72 pp.
Feoli, E. Vuerich, G. L. Zerihun, W. 2002. Evaluation of environmental degradation in northern Etiopia using GIS to integrate vegetation, geomorphological, erosion and socio-economic factors. Agriculture, Ecosystems and Environment. 91. pp. 313–325.
Ferraro, D. O. 2009. Fuzzy knowledge – based model for soil condition assessment in Argentinean cropping systems. Environmental Modelling & Software. 24. pp. 359–370.
Filzmoser, P. & Viertl, R. 2004. Testing hypotheses with fuzzy data: the fuzzy p – value. Metrika. 59. pp. 21–29.
Flanagen, D. C. & Nearing, M. A. 1995. USDA Water – Erosion Prediction Project (WEPP), Hillslope Profile and Watershed Model Documentation Technical Documentation, NSERL Report 10. USDA – ARS National Soil Erosion Research Laboratory: West Lafayette.
Freissnet, C. Erlich, M. Vauclin, M. 1998. A fuzzy logic-based approach to assess imprecisions of soil water contamination modelling. Soil & Tillage Research. 47. pp. 11–17.
Giordano, R. & Liersch, S. 2012. A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring. Environmental Modelling & Software. 36. pp. 49–63.
Gruijter, J.J. Walwoort, D. J.J. Bragato, G. 2011. Application of fuzzy logic to Boolean models for digital soil assessment., Geoderma, 166. pp. 15–33.
Gustafson, E.E. & Kessel, W. 1979. Fuzzy clustering with a fuzzy covariance matrix. Befoglaló mű: IEEE conference on Decision and Control. San Diego. pp. 761–766.
Jászberényi, I. Loch, J. Tamás, J. 1999. Evaluation of sampling patterns using geostatistical methods to develop fertilisation practice. In: Stafford J.V. (szerk.) Precision Agriculture. 1999. Part I. Academic Press. Sheffield. pp. 91–100.
Halmos, P.R. 1914. Naive set theory, Litton Educational Publishing, Inc., USA, SPIN 11007098.
Heuvelink, G. B. M. & Burrough, P. A. 1993. Error propagation in logical cartographic modelling using Boolean methods and continous classification. Int. J. Geogr. Inf. Syst. 7. pp. 231–246.
Hodza, P. 2010. Fuzzy logic and differences between interpretive soil maps. Geoderma. 156. pp. 189–199.
Hoosbeek, M. R. & Bryant, R. B. 1992. Towards the quantitative modeling of pedogenesis-A review. Geoderma 55. 183–210.
Hu, H. Chan, C. W. Huang, G. H. 2003. A fuzzy expert system for site characterization. Expert System Applied. 24. pp. 123 - 131.
Huading, S. Qingxian, G. Yongqing, Q. J. L. Yunfeng H. 2010. Wind erosion hazard assessment of the Mongolian Plateau using FCM and GIS techniques. Environmental Earth Science. 61. 689–697.
Illés, G. Kovács, G. Bidló, A. Heil, B. 2006. Digital soil and landsite mapping in forest management planning. Agrokémia és Talajtan. 55. pp. 99–108.
Jetter, J. A. Kok, K. 2014. Fuzzy cognitive maps for futures studies – A methodoligac assessment of concepts and methods. Futures. 61. pp. 45–57.
Kamphuis, J. W. 1986. Calculation of littoral sand transport rate. Coastal Engineering. 10. (1). pp. 1–21.
Karaboga, D. Bagis, A. Haktanir, T. 2004. Fuzzy logic based operation of spillway gates of reservoirs during floods. Journal of Hydrologic Engineering. 9. (6). pp. 544–549.
Klik, A. Savabi, M. R. Norton, L. D. Baumer, O. 1995. Application of WEPP hillslope model on Austria. Proc. Annual Conference of the American Water Resources Association (AWRA). Houston. Texas. pp. 313–322.
Klir, J. G. & Juan, B. 1995. Fuzzy sets and fuzzy logic: Theory and Applications, Prentice Hall PTR Prentice-Hall Inc., Upper Saddle River, New Jersey. ISBN 0- 13-101171-5.
Kóczy, T. L. & Tikk, D. 2001. Fuzzy rendszerek. Typotex Eletronikus Kiadó Kft. Budapest
Kollias, V.J. & Kalivas, D.P. 1998. The enhancement of a commercial geographical information system (ArcINFO) with fuzzy processing capabilities for the evaluation of land resources. Comput Electron Agric. 20. pp. 79–95.
Kollias, V.J. & Voliotis, A. 1991. Fuzzy reasoning int he development of geographical information systems FRSIS: a prototype of soil information system with fuzzy retrieval capabilities. International Journal of Geographical Information Sytems. 5. 209–223.
Kollias, V.J. Kalivas, D.P. Yassoglou, N.J. 1999. Mapping the soil resources of a recent alluvial plain in Greece using fuzzy sets in a GIS environment. Eur J Soil Sci. 50. pp. 261–273.
Koncsos, L. Jolánkai, ZS. Koncsos, T. Kozma, ZS. 2011. Környezeti rendszerek modellezése. BME Vízi Közmű és Környezetmérnök Tanszék. Elektronikus jegyzet
Kovács, SZ. , 1993, Fuzzy logic control, M.Phil. theses, Technical University of Budapest, Faculty of Informatics and Electrical Engineering, Budapest, Branch of Computer Science.
Kweon, G. 2012. Delineation of site-specific prodctivity zones using soil properties and topographic attributes with a fuzzy logic system. Biosystems Engineering. 112. pp. 261–277.
Li, B. L. English, E. Zhu, A. X. 2005. Development of knowledge for predictive mapping using a fuzzy c – means classifications. In: Liu, M.L., Chen, G.Q., Ying, M.S., (szerk.) Fuzzy logic, soft computing and computational intelligence. Tsinghua University Press. Beijing. pp. 1205–1209.
López, E. M. García, M. Schuhmacher, M. Domingo, J. L. 2008. A fuzzy expert system for soil characterization. Environmental International. 34. pp. 950–958.
Luh, G. C. & Lin, C. Y. 2009. Structural topology optimization using ant colony optimization alghorithm. Applied Soft Computing. 9. (4). pp. 1343–1353.
Makropoulos, C. & Butler, D. 2005. Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi – criteria decision – making. Environmental Modelling Software. 21/1. pp. 69–84.
Malczewski, J. , 2006, Ordered weighted averaging with fuzzy qantifiers: GIS based multicriteria evaluation for land-use suitability analysis, International Journal of Applied Earth Observation and Geoinformation. 8. pp. 270–277.
Mamdani, E. H. & Assililan, S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. of Man Machine Studies, 7(1):1–13.
Márquez, M. A. & Pérez-Guevara, E. 2010. Comparative analysis of erosion modeling techniques in a basin of Venezuela. Journal of Urban and Environmental Engineering, v.4, n.2, p. 81–104, ISSN 1982-3932.
Mays, M.D. Bogardi, I. Bardossy, A. 1997. Fuzzy logic and risk – based soil interpretations. Geoderma. 77. pp. 299–315.
McBratney, A. B. & Odeh, O. A. I. 1997. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurement and fuzzy decisions. Geoderma. 77. pp. 85–113.
McBratney, A. B. 1992. On variation, uncertainty and informatics in environmental soil management. Australian Journal Soil Research. 32. 623–633.
McBratney, A.B. & Moran, C.J. 1994. Soil pore structure modelling using fuzzy random pseudofractal sets. In: Ringrose-Voase, A.J., Humphreys, G.S., Soil Morphology: Studies in Management and Genesis. Proc. 9th. Working Meeting, Soil Micromorphpology, Townsville, Australia, pp. 495–506.
McNeill, M. F. & Thro, E. 1994. Fuzzy Logic: A practical approach. Academic Press INC. London.
Metternicht, G. & Gonzalez, S. 2005. FUERO: foundations of fuzzy exploratory model for soil erosion hazard prediction. Environmental Modelling & Software. 20. pp. 715–728.
Metternicht, G. 2001. Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological Modelling. 144. pp. 163–179.
Metternicht, G.I. 1998. Fuzzy classification of JERS – 1 SAR data: an evaluation of its performance for soil salinity mapping. Ecological Modelling. 111. pp. 61–74.
Metternicht, G.I. 2003. Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-effected soils using Landsat-TM data and a classification based on anion ratios. Ecological Modelling. 168. pp. 371–389.
Mezősi, G. Blanka, V. Bata, T. Kovács, F. Meyer, B. 2013. Estimation of regional differencies in wind erosion sensitivity in Hungary. Natural Hazard Earth Syst. Sci. Discuss., 1, 4713–4750.
Minasny, B. & McBratney, A.B. 2002. FuzME version 3.0, Australian Centre for Precision Agriculture, The University of Sydney, Australia
Mitra, B. Scot, H. D. Dixon, C.J., McKimmey, J.M. 1998. Application of fuzzy logic to the prediction of soil erosion in a large watershed. Geoderma 86. pp. 183–209.
Monk, D. J. 2016. Stanford Encylopedia of Philosophy: The Mathematics of Boolean Algebra. ISSN: 1095-5054.
Moran, C.J. & McBratney, A.B. 1997. A two dimensional fuzzy random model of soil pore structure. Mathematical Geology, Vol. 29, No. 6, pp. 755–777.
Morgan, R. P. C. Quinton, J. N. Smith, R. E. Govers, G. Poesen, J.W. A. Auerswald, K. Chisci, G. Torri, D. Styczen, M. E. 1998. The European Soil Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes Landf. 23. (6). pp. 527–544.
Murmu, S. & Biswas, S. 2015. Application of fuzzy logic and neural network in crop classification: A review. Aquatic Procedia. 4. pp. 1203–1210.
Nanda, A. Rath, K. A. Dinda, B. Rath, R. 2011. Genetic fuzzy approach for prediction of coastal erosion, International Journal of Computer Information Systems, Vol. 2, No. 2.
Nanda, A. Rath, K. A. Rout, K. S. 2010. Real time wireless sensor network for coastal erosion using fuzzy interface system. International Journal of Computer Science & Emerging Technologies. 1. (2). pp. 47–51.
NOAA, 2012: http://gis.ncdc.noaa.gov/map/viewer.
Odeh, I.O.A. McBratney, A.B. Chittleborough, D.J. 1992. Soil pattern recognition with fuzzy c-means: application to classification and soil-landform interrelationships. Soil Sci. Soc. Am. 56, 505–516.
Odeh, I.O.A. 1996. A fuzzy multi-criterial approach to field soil description: an example. Pedometrics Symposium, Organized by ACLEP and ISSS Working Group on Pedometrics, Melbourne, July 1-4. pp. 201–202.
Özdemir, N. 2002. Soil and Water Protection (Toprak ve Su Koruma), Samsun.
Parchami, A. Ivani, R. Mashinchi, M. 2010. An application of testing fuzzy hypotheses: Soil study on the bioavailability of cadmium. Scientica Iranica C. 18. (3), 470–478.
Parchami, A. Taheri, S. M. Mashinchi, M. 2010. Fuzzy p – value in testing fuzzy hypotheses with crisp data. Statistical Papers. 51 (1). pp. 209–226.
Peche, R. & Rodríguez, E. 2009. Environmental impact assessment procedure: A new approach based on fuzzy logic. Environmental Impact Assessment Review. 29. pp. 275–283.
Peche, R. & Rodríguez, E. 2012. Development of environmental quality indexes based on fuzzy logic. A case study. Ecological Indicators. 23. pp. 555–565.
Piros, A. & Veres, G. 2013. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER. Fusion Engineering And Design 88. pp. 1183–1186.
Plyusnin, I. 1964. Reclamative Soil Science. Foreign Languages Publishing House, Moscow.
Pongracz, R. Bogardi, I. Duckstein, L. 2011. Application of fuzzy rule-based modelling technique to regional drought. Journal of Hydrology. 224. pp. 100–114.
Promentilla, M. A. B. Furuichi, T. Ishii, K. Tanikawa, N. 2008. A fuzzy analytic network process for multi –criteria evaluation of contaminated site remedial countermeasures. Journal of Environmental Management. 88. pp. 479–495.
Raines, G. L. Sawatzky, D. L. Bonham-Carter, G. F. 2010. Incorporating Expert Knowledge: New fuzzy logic tools in ArcGIS 10., ArcGIS 10 Softver Guide.
Rajkai, K. 2001. Modellezés és modellhasználat a talajtani kutatásban. Agrokémia és Talajtan Tom. 50. No. 3-4. 469–508. pp.
Robinson, V. B. & Strahler, A. H. 1984. Issues in designing geographic information systems under conditions of inexactness. Machine Processing of Remotely Sense Data, pp. 179–188.
Saboya, F. Alves, G. M. Pinto, W. D. 2006. Assesment of failure susceptibility of soil slopes using fuzzy logic. Engineering Geology. 86. pp. 211–224.
Sami, M. Shiekhdavoodi, J. M. Pazhohanniya, M. Pazhohanniya, F. 2014. Environmental comprehensive assessment of agricultural systems at farm level using fuzzy logic: A case study in cane farm sin Iran. Environmental Modelling & Software. 58. pp. 95–108.
Sárbu, C. Zehl, K. Einax, W. J. 2007. Fuzzy divisive hierarchical clustering of soil data using Gustafson–Kessel algorithm. Chemometrics and Intelligent Laboratory Systems. 86. pp. 121–129.
Sattler, C. Stachow, U. Berger, G. 2012. Expert knowledge-based assessment of farming practices for different biotic indicators using fuzzy logic. Journal of Environmental Management. 95. pp. 132–143.
Schmidt, S. Meusburger, K. Figuerideo, T. Alewell, C. 2016. Modelling hot spots of soil loss by wind erosion (SoLoWIND) in Western Saxony, Germany. Land Degradation Development. DOI.: 10.1002/ldr.2652.
Selye, J. 1967. Álomtól a felfedezésig. Egy tudós vallomásai. Akadémiai Kiadó, Budapest, Eredeti: From Dream to Discovery. Confession of a Scientist. (Ford. Józsa Péter). New York–Toronto–London, McGraw-Hill.
Silvert, W. 2000. Fuzzy indices of environmental conditions. Ecological Modelling. 130. pp. 111–119.
Simons, D. B. Li, R. M. Fullerton, L. 1981. Theoretically derived sediment transport equations for Prima County, Arizona. Prepared for Pima County DOT and Flood Control District. Tucson. Arizona. Colorado.
Steinhardt, U. 1998. Applying the fuzzy set theory for medium and small scale landscape assessment. Landscape and Urban Planning 41. pp. 203–208.
Sui, D. Z. 1992. A fuzzy GIS modelling approach for urban land evaluation. Computer Environment and Urban Systems. 16. 101–115.
Szabó, J. Pásztor, L. Bakacsi, ZS. 2005. Egy országos, átnézetes, térbeli talajinformációs rendszer kiépítésének igénye, lehetőségei és lépései. Agrokémia és Talajtan. 54. pp. 41–58.
Tamás, J. Csillag, J. Murányi A. 1997. Risk mapping of potentially toxic element’s pollution by modelling combined effects of pH, clay mineral and organic matter. In: Filep György, Soil, Water and Environmental Relationship: Soil Pollution. 1998, Rexpo Ltd. Debrecen, ISBN: 9630364069.
Tamás, J. Mézes, L. Bíró, GY. Nyírcsák, M. Borbély, J. 2012. Fuzzy system to optimize the anaerobic digestion in biogas reactors. In: Proceedings of 8th. International Conference ORBIT 2012. France, Rennes. pp. 35–39.
Tayfur, G. Ozdemir, S. Singh, P. V. 2003. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advances in Water Resources. 26. pp. 1249–1256.
Tayfur, G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal IAHS. 47/6.
Tóth, ZS. E. & Jónás, T. 2014. Fuzzy elmélet a menedzsmentben. Elektronikus Oktatási Segédanyag. Budapest.
Tran, L.T. Ridgley, M.A. Duckstein, L. Sutherland, R. 2002. Application of fuzzy logic-based modelling to improve the performance of the revised universal soil loss equation. Catena 47. pp. 203–226.
Ure, A.M. Quevauviller, Ph. Muntau, H. Griepink, B. 1993.a. Specation of heavy metal in soils and extraction techniques undertaken under the auspices of BCR of the Comission of the European Communities. Internationak Journal of Environmental and Analitical Chemistry. 51. pp. 135–151.
Ure, A.M., Quevauviller, Ph., Muntau, H., Griepink, B. 1993. b. Specation of heavy metal in soils and sediments – an account of the improvements and harmonisations of extraction techniques undertaken under the auspecies of the BCR of the Comission of the European Communities. Internationak Journal of Environmental and Analitical Chemistry. 51. pp. 135–151.
USGS LP DAAC Data Pool Database, 2012: http://e4eil01.cr.usgs.gov:22000/WebAccess/drill?attrib=esdt&esdt=MOD13Q1.5&group=MOLT.
Wang, S. Z. Zhao, Z. H. Xia, B. Qiu, H. Morel, J. L. Qiu, R. L. 2014. A fuzzy-based methodology for an aggregative environmental risk assessment of restored soil. Pedosphere. 24(2): 220–231.
Waterstone, M. 1994. Institutional analysis and water resources management. In: Druckstein, L., Parent, E., Natural Resources Management. Kluver, Dordecht.
Zadeh, L. A. 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on SMC, 1(1):28–44.
Zadeh, L.A. 1965. Fuzzy sets, Information and Control 8, pp.338–353.
Zhao, S. X. 1986. Discussion on fuzzy clustering. In: Proceedings of the Eighth International Conference on Pattern Recognition. IEEE Press. New York. pp. 612–614.
Zhu, A. X. Wang, R. Qiao, J. Qin, C.Z. Chen, Y. Liu, J. Du, F. 2014. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology. 214. pp. 128–138.
Zhu, A. X. Yang, L. Li, B. Qin, C. Pei, T. Liu, B. 2010. Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma 155. pp. 164–174.
Zhu, A-X. Band, L. E. Dutton., B. Nimlos, T. J. 1996. Automated soil inference under fuzzy logic. Ecological Modelling. 90. pp. 123–145.