Authors:
Károly Tatárvári MÉK Víz - és Környezettudományi Tanszék, Mosonmagyaróvár

Search for other papers by Károly Tatárvári in
Current site
Google Scholar
PubMed
Close
and
Attila Piros Gép és Terméktervezés Tanszék, Budapest

Search for other papers by Attila Piros in
Current site
Google Scholar
PubMed
Close
Restricted access

A bemutatott tanulmányok alátámasztják MCBRATNEY és ODEH (1997), valamint JETTER és KOK (2014) összegzését, akik a fuzzy modellezés jelenlegi helyzetének részletes értékelése során kifejtették, hogy a fuzzy rendszerek és modellek a jövő fontos kutatási eszközei lehetnek. A „lágy” számítási módszerek a talaj- az, agrár- és a környezettudományok területén egyre nagyobb teret hódítanak meg. Nagy előnyt jelent a bizonytalan, nem vagy nehezen számszerűsíthető adatok használatának és a határvonalak nem éles, kategóriánként eltérő kijelölésének lehetősége. Megfelelő matematikai és interdiszciplináris kutatói hátteret feltételezve egyszerű, gyors és olcsó módszer, amely a hagyományos eljárásoknál pontosabb, és a laikusok által is értelmezhető eredményeket szolgáltat.

  • AGROTOPO Adatbázis, 1991: http://maps.rissac.hu/agrotopo_hu/

  • Akyurek, Z. & Okalp, K. 2006. A fuzzy-based tool for spatial reasoning: A Case study on soil erosion hazard prediction, In: 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Edited by: M. Caetano and M. Painho.

    • Search Google Scholar
    • Export Citation
  • Amini, M. Afyuni, M. Fathianpour, N. Khademi, H. Flühler, H. 2005. Continuous soil pollution mapping using fuzzy logic and spatial interpolation. Geoderma 124. pp. 223333.

    • Search Google Scholar
    • Export Citation
  • Assimakopoulos, J.H. Kalivas, D. P. Kollias, V.J. 2003. A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use. The Science of the Total Environment. 309. pp. 1933.

    • Search Google Scholar
    • Export Citation
  • Astel, A. 2007. Chemometrics based on fuzzy logic principles in environmental studies. Talanta. 72. pp. 112.

  • Bárdossy, A. & Duckstein, L. 1995. Fuzzy rule-based modelling with applications to geophysical. Biological and Engineering Systems. CRC Press. New York. 113 pp.

    • Search Google Scholar
    • Export Citation
  • Bárdossy, A. Bogardi, I. Kelly, W. E. , 1990a. Kriging with imprecise (fuzzy) variogram, Part I. Mathematical geoscinces theory methods and applications. 22. 6379.

    • Search Google Scholar
    • Export Citation
  • Bárdossy, A. Bogardi, I. Kelly, W. E. , 1990 b. Kriging with imprecise (fuzzy) variogram, Part II. Mathematical geoscinces theory methods and applications. 22. 8194.

    • Search Google Scholar
    • Export Citation
  • Bezdek, C. J. Ehrlich, R. Full, W. 1984. FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences. Volume 10. Issues 2-3. pp. 191203.

    • Search Google Scholar
    • Export Citation
  • Bezdek, J. C. 1981. Pattern recognition wit fuzzy objective function algorithms. Plenum, New York.

  • Bezdek, J.C. Keller, J. Krisnapuram, R. Pal, N.R. 1999. Fuzzy models and algorithms for pattern recognition and image processing. Kluwer Academy Publishers. Boston.

    • Search Google Scholar
    • Export Citation
  • Bloch, I. & Maitre, H. 1995. Fuzzy mathematical morphologies: A comparative study. Pattern Recognition, Vol 28., No. 9., pp. 13411387.

    • Search Google Scholar
    • Export Citation
  • Borelli, P. Panagos, P. Ballabio, C. Lugato, E. Weynants, M. Montanarella, L. 2014. Towards a Pan-European assessment of land susceptibility to wind erosion. Land Degradation & Development. DOI: 10.1002/ldr.2318

    • Search Google Scholar
    • Export Citation
  • Bragato, G. 2004. Fuzzy continous classification and spatial interpolation in conventional soil survey for soil mapping of the lower Piawe plain. Geoderma. 118. pp. 116.

    • Search Google Scholar
    • Export Citation
  • Burrough, P. A. 1986. Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford,194 pp.

  • Burrough, P.A. 1989. Fuzzy mathematic methods for soil survey and land evaluation. Journal of Soil Scince. 40. 447492.

  • Callott, Y. Marticorena, B. Bergametti, G. 2000. Geomorphologic approach for modeling the surface features of arid environments in a model of dust emissions: application to the Sahara Desert. Geodinamica Acta. 13. (5). pp. 245270.

    • Search Google Scholar
    • Export Citation
  • Camarinha, P.I.M. Trannin, I.C.B. Simoes, S.JC. Bernardes, G.P. 2011. Fuzzy logic and geostatistical techniques for spatialization of soil texture in region with rough terrains. Procedia Environmental Sciences. 7. pp. 347352.

    • Search Google Scholar
    • Export Citation
  • Caniani, D. Lioi, D. S. Mancini, I. M. Masi, S. 2011. Application of fuzzy logic and sensitivity analysis for soil contamination hazard classification. Waste Management, 31. pp. 583594.

    • Search Google Scholar
    • Export Citation
  • Carlson, N. T. & Ripley, A. D. 1997. Ont he relation between NDVI, fractional vegetation factor, and leaf area index. Remote Sensing of Environment. 62. (3). pp. 241252.

    • Search Google Scholar
    • Export Citation
  • Cohen, S. Svoray, T. Laronne, B. J. Alexandrov, Y. 2008. Fuzzy-based dynamic soil erosion model (FuDSEM): Modelling approach and preliminary evaluation. Journal of Hydrology. 356. pp. 185198.

    • Search Google Scholar
    • Export Citation
  • Cornelissen, A. M. G. Berg, J. Koops, W.J. Grossmann, M. Udo, H.M.J. 2001. Assessment of the contribution of sustainability indicators to sustainable development: a novel approach using fuzzy set theory. Agriculture, Ecosystems and Environment 86. pp. 173185.

    • Search Google Scholar
    • Export Citation
  • Daniell, T. M. 1991. Neural networks – application in hydrology and water resources engineering. In: Proceedings of International Hydrology and Water Resources Symposium. Perth. Australia. pp. 791802.

    • Search Google Scholar
    • Export Citation
  • Davatgar, N. Neishabouri, M.R. Sepaskah, A.R. 2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma. 173-174. pp. 111118.

    • Search Google Scholar
    • Export Citation
  • Delcourt, H. R. & Delcourt, P. A. 1988. Quaternary landscape ecology: Relevant scales in space and time. Landscape Ecol. 2. 2344.

  • Demirel, T. & Tüzün, S. 2011. Multi criteria evaluation of the methods for preventing soil erosion using fuzzy ANP: the case of Turkey. Proceedings of the World Congress on Engineering 2011. Vol. II. WCE 2011, July. 6-8. 2011. London. U.K.

    • Search Google Scholar
    • Export Citation
  • Dobermann, A. & Oberthür, T. 1997. Fuzzy mapping of soil fertility – a case study on irrigated riceland int he Phillipines. Geoderma. 77. pp. 317339.

    • Search Google Scholar
    • Export Citation
  • Dombi, J. 1988. Membership function as an evaluation, Fuzzy Sets and Systems 35. (1990) 121., North-Holland.

  • Dombi, J. 1990. Membership function as an evaluation. Fuzzy sets systems. 35. pp. 121.

  • Eastman, J. R., Kyem, P. A. K., Toledano, J. Jin, W. 1993. GIS and decision making, Explorations in Geographical Information System Technology. Unitar. Genova. 4.

    • Search Google Scholar
    • Export Citation
  • Enea, M. & Salemi, G. 2001. Fuzzy approach to the environmental impact evaluation. Ecological Modelling. 135. pp. 131147.

  • European Environment Agency. 2006: CORINE Land Cover Technical Guide: Addendum, EEA, Copenhagen.

  • FAO 1976. A framework for land evaluation. Soils Bulletin 32. FAO, Rome,72 pp.

  • Feoli, E. Vuerich, G. L. Zerihun, W. 2002. Evaluation of environmental degradation in northern Etiopia using GIS to integrate vegetation, geomorphological, erosion and socio-economic factors. Agriculture, Ecosystems and Environment. 91. pp. 313325.

    • Search Google Scholar
    • Export Citation
  • Ferraro, D. O. 2009. Fuzzy knowledge – based model for soil condition assessment in Argentinean cropping systems. Environmental Modelling & Software. 24. pp. 359370.

    • Search Google Scholar
    • Export Citation
  • Filzmoser, P. & Viertl, R. 2004. Testing hypotheses with fuzzy data: the fuzzy p – value. Metrika. 59. pp. 2129.

  • Flanagen, D. C. & Nearing, M. A. 1995. USDA Water – Erosion Prediction Project (WEPP), Hillslope Profile and Watershed Model Documentation Technical Documentation, NSERL Report 10. USDA – ARS National Soil Erosion Research Laboratory: West Lafayette.

    • Search Google Scholar
    • Export Citation
  • Freissnet, C. Erlich, M. Vauclin, M. 1998. A fuzzy logic-based approach to assess imprecisions of soil water contamination modelling. Soil & Tillage Research. 47. pp. 1117.

    • Search Google Scholar
    • Export Citation
  • Giordano, R. & Liersch, S. 2012. A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring. Environmental Modelling & Software. 36. pp. 4963.

    • Search Google Scholar
    • Export Citation
  • Gruijter, J.J. Walwoort, D. J.J. Bragato, G. 2011. Application of fuzzy logic to Boolean models for digital soil assessment., Geoderma, 166. pp. 1533.

    • Search Google Scholar
    • Export Citation
  • Gustafson, E.E. & Kessel, W. 1979. Fuzzy clustering with a fuzzy covariance matrix. Befoglaló mű: IEEE conference on Decision and Control. San Diego. pp. 761766.

    • Search Google Scholar
    • Export Citation
  • Jászberényi, I. Loch, J. Tamás, J. 1999. Evaluation of sampling patterns using geostatistical methods to develop fertilisation practice. In: Stafford J.V. (szerk.) Precision Agriculture. 1999. Part I. Academic Press. Sheffield. pp. 91100.

    • Search Google Scholar
    • Export Citation
  • Halmos, P.R. 1914. Naive set theory, Litton Educational Publishing, Inc., USA, SPIN 11007098.

  • Heuvelink, G. B. M. & Burrough, P. A. 1993. Error propagation in logical cartographic modelling using Boolean methods and continous classification. Int. J. Geogr. Inf. Syst. 7. pp. 231246.

    • Search Google Scholar
    • Export Citation
  • Hodza, P. 2010. Fuzzy logic and differences between interpretive soil maps. Geoderma. 156. pp. 189199.

  • Hoosbeek, M. R. & Bryant, R. B. 1992. Towards the quantitative modeling of pedogenesis-A review. Geoderma 55. 183210.

  • Hu, H. Chan, C. W. Huang, G. H. 2003. A fuzzy expert system for site characterization. Expert System Applied. 24. pp. 123 - 131.

  • Huading, S. Qingxian, G. Yongqing, Q. J. L. Yunfeng H. 2010. Wind erosion hazard assessment of the Mongolian Plateau using FCM and GIS techniques. Environmental Earth Science. 61. 689697.

    • Search Google Scholar
    • Export Citation
  • Illés, G. Kovács, G. Bidló, A. Heil, B. 2006. Digital soil and landsite mapping in forest management planning. Agrokémia és Talajtan. 55. pp. 99108.

    • Search Google Scholar
    • Export Citation
  • Jetter, J. A. Kok, K. 2014. Fuzzy cognitive maps for futures studies – A methodoligac assessment of concepts and methods. Futures. 61. pp. 4557.

    • Search Google Scholar
    • Export Citation
  • Kamphuis, J. W. 1986. Calculation of littoral sand transport rate. Coastal Engineering. 10. (1). pp. 121.

  • Karaboga, D. Bagis, A. Haktanir, T. 2004. Fuzzy logic based operation of spillway gates of reservoirs during floods. Journal of Hydrologic Engineering. 9. (6). pp. 544549.

    • Search Google Scholar
    • Export Citation
  • Klik, A. Savabi, M. R. Norton, L. D. Baumer, O. 1995. Application of WEPP hillslope model on Austria. Proc. Annual Conference of the American Water Resources Association (AWRA). Houston. Texas. pp. 313322.

    • Search Google Scholar
    • Export Citation
  • Klir, J. G. & Juan, B. 1995. Fuzzy sets and fuzzy logic: Theory and Applications, Prentice Hall PTR Prentice-Hall Inc., Upper Saddle River, New Jersey. ISBN 0- 13-101171-5.

    • Search Google Scholar
    • Export Citation
  • Kóczy, T. L. & Tikk, D. 2001. Fuzzy rendszerek. Typotex Eletronikus Kiadó Kft. Budapest

  • Kollias, V.J. & Kalivas, D.P. 1998. The enhancement of a commercial geographical information system (ArcINFO) with fuzzy processing capabilities for the evaluation of land resources. Comput Electron Agric. 20. pp. 7995.

    • Search Google Scholar
    • Export Citation
  • Kollias, V.J. & Voliotis, A. 1991. Fuzzy reasoning int he development of geographical information systems FRSIS: a prototype of soil information system with fuzzy retrieval capabilities. International Journal of Geographical Information Sytems. 5. 209223.

    • Search Google Scholar
    • Export Citation
  • Kollias, V.J. Kalivas, D.P. Yassoglou, N.J. 1999. Mapping the soil resources of a recent alluvial plain in Greece using fuzzy sets in a GIS environment. Eur J Soil Sci. 50. pp. 261273.

    • Search Google Scholar
    • Export Citation
  • Koncsos, L. Jolánkai, ZS. Koncsos, T. Kozma, ZS. 2011. Környezeti rendszerek modellezése. BME Vízi Közmű és Környezetmérnök Tanszék. Elektronikus jegyzet

    • Search Google Scholar
    • Export Citation
  • Kovács, SZ. , 1993, Fuzzy logic control, M.Phil. theses, Technical University of Budapest, Faculty of Informatics and Electrical Engineering, Budapest, Branch of Computer Science.

    • Search Google Scholar
    • Export Citation
  • Kweon, G. 2012. Delineation of site-specific prodctivity zones using soil properties and topographic attributes with a fuzzy logic system. Biosystems Engineering. 112. pp. 261277.

    • Search Google Scholar
    • Export Citation
  • Li, B. L. English, E. Zhu, A. X. 2005. Development of knowledge for predictive mapping using a fuzzy c – means classifications. In: Liu, M.L., Chen, G.Q., Ying, M.S., (szerk.) Fuzzy logic, soft computing and computational intelligence. Tsinghua University Press. Beijing. pp. 12051209.

    • Search Google Scholar
    • Export Citation
  • López, E. M. García, M. Schuhmacher, M. Domingo, J. L. 2008. A fuzzy expert system for soil characterization. Environmental International. 34. pp. 950958.

    • Search Google Scholar
    • Export Citation
  • Luh, G. C. & Lin, C. Y. 2009. Structural topology optimization using ant colony optimization alghorithm. Applied Soft Computing. 9. (4). pp. 13431353.

    • Search Google Scholar
    • Export Citation
  • Makropoulos, C. & Butler, D. 2005. Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi – criteria decision – making. Environmental Modelling Software. 21/1. pp. 6984.

    • Search Google Scholar
    • Export Citation
  • Malczewski, J. , 2006, Ordered weighted averaging with fuzzy qantifiers: GIS based multicriteria evaluation for land-use suitability analysis, International Journal of Applied Earth Observation and Geoinformation. 8. pp. 270277.

    • Search Google Scholar
    • Export Citation
  • Mamdani, E. H. & Assililan, S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. of Man Machine Studies, 7(1):113.

    • Search Google Scholar
    • Export Citation
  • Márquez, M. A. & Pérez-Guevara, E. 2010. Comparative analysis of erosion modeling techniques in a basin of Venezuela. Journal of Urban and Environmental Engineering, v.4, n.2, p. 81104, ISSN 1982-3932.

    • Search Google Scholar
    • Export Citation
  • Mays, M.D. Bogardi, I. Bardossy, A. 1997. Fuzzy logic and risk – based soil interpretations. Geoderma. 77. pp. 299315.

  • McBratney, A. B. & Odeh, O. A. I. 1997. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurement and fuzzy decisions. Geoderma. 77. pp. 85113.

    • Search Google Scholar
    • Export Citation
  • McBratney, A. B. 1992. On variation, uncertainty and informatics in environmental soil management. Australian Journal Soil Research. 32. 623633.

    • Search Google Scholar
    • Export Citation
  • McBratney, A.B. & Moran, C.J. 1994. Soil pore structure modelling using fuzzy random pseudofractal sets. In: Ringrose-Voase, A.J., Humphreys, G.S., Soil Morphology: Studies in Management and Genesis. Proc. 9th. Working Meeting, Soil Micromorphpology, Townsville, Australia, pp. 495506.

    • Search Google Scholar
    • Export Citation
  • McNeill, M. F. & Thro, E. 1994. Fuzzy Logic: A practical approach. Academic Press INC. London.

  • Metternicht, G. & Gonzalez, S. 2005. FUERO: foundations of fuzzy exploratory model for soil erosion hazard prediction. Environmental Modelling & Software. 20. pp. 715728.

    • Search Google Scholar
    • Export Citation
  • Metternicht, G. 2001. Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological Modelling. 144. pp. 163179.

    • Search Google Scholar
    • Export Citation
  • Metternicht, G.I. 1998. Fuzzy classification of JERS – 1 SAR data: an evaluation of its performance for soil salinity mapping. Ecological Modelling. 111. pp. 6174.

    • Search Google Scholar
    • Export Citation
  • Metternicht, G.I. 2003. Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-effected soils using Landsat-TM data and a classification based on anion ratios. Ecological Modelling. 168. pp. 371389.

    • Search Google Scholar
    • Export Citation
  • Mezősi, G. Blanka, V. Bata, T. Kovács, F. Meyer, B. 2013. Estimation of regional differencies in wind erosion sensitivity in Hungary. Natural Hazard Earth Syst. Sci. Discuss., 1, 47134750.

    • Search Google Scholar
    • Export Citation
  • Minasny, B. & McBratney, A.B. 2002. FuzME version 3.0, Australian Centre for Precision Agriculture, The University of Sydney, Australia

    • Search Google Scholar
    • Export Citation
  • Mitra, B. Scot, H. D. Dixon, C.J., McKimmey, J.M. 1998. Application of fuzzy logic to the prediction of soil erosion in a large watershed. Geoderma 86. pp. 183209.

    • Search Google Scholar
    • Export Citation
  • Monk, D. J. 2016. Stanford Encylopedia of Philosophy: The Mathematics of Boolean Algebra. ISSN: 1095-5054.

  • Moran, C.J. & McBratney, A.B. 1997. A two dimensional fuzzy random model of soil pore structure. Mathematical Geology, Vol. 29, No. 6, pp. 755777.

    • Search Google Scholar
    • Export Citation
  • Morgan, R. P. C. Quinton, J. N. Smith, R. E. Govers, G. Poesen, J.W. A. Auerswald, K. Chisci, G. Torri, D. Styczen, M. E. 1998. The European Soil Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes Landf. 23. (6). pp. 527544.

    • Search Google Scholar
    • Export Citation
  • Murmu, S. & Biswas, S. 2015. Application of fuzzy logic and neural network in crop classification: A review. Aquatic Procedia. 4. pp. 12031210.

    • Search Google Scholar
    • Export Citation
  • Nanda, A. Rath, K. A. Dinda, B. Rath, R. 2011. Genetic fuzzy approach for prediction of coastal erosion, International Journal of Computer Information Systems, Vol. 2, No. 2.

    • Search Google Scholar
    • Export Citation
  • Nanda, A. Rath, K. A. Rout, K. S. 2010. Real time wireless sensor network for coastal erosion using fuzzy interface system. International Journal of Computer Science & Emerging Technologies. 1. (2). pp. 4751.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2012: http://gis.ncdc.noaa.gov/map/viewer.

  • Odeh, I.O.A. McBratney, A.B. Chittleborough, D.J. 1992. Soil pattern recognition with fuzzy c-means: application to classification and soil-landform interrelationships. Soil Sci. Soc. Am. 56, 505516.

    • Search Google Scholar
    • Export Citation
  • Odeh, I.O.A. 1996. A fuzzy multi-criterial approach to field soil description: an example. Pedometrics Symposium, Organized by ACLEP and ISSS Working Group on Pedometrics, Melbourne, July 1-4. pp. 201202.

    • Search Google Scholar
    • Export Citation
  • Özdemir, N. 2002. Soil and Water Protection (Toprak ve Su Koruma), Samsun.

  • Parchami, A. Ivani, R. Mashinchi, M. 2010. An application of testing fuzzy hypotheses: Soil study on the bioavailability of cadmium. Scientica Iranica C. 18. (3), 470478.

    • Search Google Scholar
    • Export Citation
  • Parchami, A. Taheri, S. M. Mashinchi, M. 2010. Fuzzy p – value in testing fuzzy hypotheses with crisp data. Statistical Papers. 51 (1). pp. 209226.

    • Search Google Scholar
    • Export Citation
  • Peche, R. & Rodríguez, E. 2009. Environmental impact assessment procedure: A new approach based on fuzzy logic. Environmental Impact Assessment Review. 29. pp. 275283.

    • Search Google Scholar
    • Export Citation
  • Peche, R. & Rodríguez, E. 2012. Development of environmental quality indexes based on fuzzy logic. A case study. Ecological Indicators. 23. pp. 555565.

    • Search Google Scholar
    • Export Citation
  • Piros, A. & Veres, G. 2013. Fuzzy based method for project planning of the infrastructure design for the diagnostic in ITER. Fusion Engineering And Design 88. pp. 11831186.

    • Search Google Scholar
    • Export Citation
  • Plyusnin, I. 1964. Reclamative Soil Science. Foreign Languages Publishing House, Moscow.

  • Pongracz, R. Bogardi, I. Duckstein, L. 2011. Application of fuzzy rule-based modelling technique to regional drought. Journal of Hydrology. 224. pp. 100114.

    • Search Google Scholar
    • Export Citation
  • Promentilla, M. A. B. Furuichi, T. Ishii, K. Tanikawa, N. 2008. A fuzzy analytic network process for multi –criteria evaluation of contaminated site remedial countermeasures. Journal of Environmental Management. 88. pp. 479495.

    • Search Google Scholar
    • Export Citation
  • Raines, G. L. Sawatzky, D. L. Bonham-Carter, G. F. 2010. Incorporating Expert Knowledge: New fuzzy logic tools in ArcGIS 10., ArcGIS 10 Softver Guide.

    • Search Google Scholar
    • Export Citation
  • Rajkai, K. 2001. Modellezés és modellhasználat a talajtani kutatásban. Agrokémia és Talajtan Tom. 50. No. 3-4. 469508. pp.

  • Robinson, V. B. & Strahler, A. H. 1984. Issues in designing geographic information systems under conditions of inexactness. Machine Processing of Remotely Sense Data, pp. 179188.

    • Search Google Scholar
    • Export Citation
  • Saboya, F. Alves, G. M. Pinto, W. D. 2006. Assesment of failure susceptibility of soil slopes using fuzzy logic. Engineering Geology. 86. pp. 211224.

    • Search Google Scholar
    • Export Citation
  • Sami, M. Shiekhdavoodi, J. M. Pazhohanniya, M. Pazhohanniya, F. 2014. Environmental comprehensive assessment of agricultural systems at farm level using fuzzy logic: A case study in cane farm sin Iran. Environmental Modelling & Software. 58. pp. 95108.

    • Search Google Scholar
    • Export Citation
  • Sárbu, C. Zehl, K. Einax, W. J. 2007. Fuzzy divisive hierarchical clustering of soil data using Gustafson–Kessel algorithm. Chemometrics and Intelligent Laboratory Systems. 86. pp. 121129.

    • Search Google Scholar
    • Export Citation
  • Sattler, C. Stachow, U. Berger, G. 2012. Expert knowledge-based assessment of farming practices for different biotic indicators using fuzzy logic. Journal of Environmental Management. 95. pp. 132143.

    • Search Google Scholar
    • Export Citation
  • Schmidt, S. Meusburger, K. Figuerideo, T. Alewell, C. 2016. Modelling hot spots of soil loss by wind erosion (SoLoWIND) in Western Saxony, Germany. Land Degradation Development. DOI.: 10.1002/ldr.2652.

    • Search Google Scholar
    • Export Citation
  • Selye, J. 1967. Álomtól a felfedezésig. Egy tudós vallomásai. Akadémiai Kiadó, Budapest, Eredeti: From Dream to Discovery. Confession of a Scientist. (Ford. Józsa Péter). New York–Toronto–London, McGraw-Hill.

    • Search Google Scholar
    • Export Citation
  • Silvert, W. 2000. Fuzzy indices of environmental conditions. Ecological Modelling. 130. pp. 111119.

  • Simons, D. B. Li, R. M. Fullerton, L. 1981. Theoretically derived sediment transport equations for Prima County, Arizona. Prepared for Pima County DOT and Flood Control District. Tucson. Arizona. Colorado.

    • Search Google Scholar
    • Export Citation
  • Steinhardt, U. 1998. Applying the fuzzy set theory for medium and small scale landscape assessment. Landscape and Urban Planning 41. pp. 203208.

    • Search Google Scholar
    • Export Citation
  • Sui, D. Z. 1992. A fuzzy GIS modelling approach for urban land evaluation. Computer Environment and Urban Systems. 16. 101115.

  • Szabó, J. Pásztor, L. Bakacsi, ZS. 2005. Egy országos, átnézetes, térbeli talajinformációs rendszer kiépítésének igénye, lehetőségei és lépései. Agrokémia és Talajtan. 54. pp. 4158.

    • Search Google Scholar
    • Export Citation
  • Tamás, J. Csillag, J. Murányi A. 1997. Risk mapping of potentially toxic element’s pollution by modelling combined effects of pH, clay mineral and organic matter. In: Filep György, Soil, Water and Environmental Relationship: Soil Pollution. 1998, Rexpo Ltd. Debrecen, ISBN: 9630364069.

    • Search Google Scholar
    • Export Citation
  • Tamás, J. Mézes, L. Bíró, GY. Nyírcsák, M. Borbély, J. 2012. Fuzzy system to optimize the anaerobic digestion in biogas reactors. In: Proceedings of 8th. International Conference ORBIT 2012. France, Rennes. pp. 3539.

    • Search Google Scholar
    • Export Citation
  • Tayfur, G. Ozdemir, S. Singh, P. V. 2003. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advances in Water Resources. 26. pp. 12491256.

    • Search Google Scholar
    • Export Citation
  • Tayfur, G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal IAHS. 47/6.

  • Tóth, ZS. E. & Jónás, T. 2014. Fuzzy elmélet a menedzsmentben. Elektronikus Oktatási Segédanyag. Budapest.

  • Tran, L.T. Ridgley, M.A. Duckstein, L. Sutherland, R. 2002. Application of fuzzy logic-based modelling to improve the performance of the revised universal soil loss equation. Catena 47. pp. 203226.

    • Search Google Scholar
    • Export Citation
  • Ure, A.M. Quevauviller, Ph. Muntau, H. Griepink, B. 1993.a. Specation of heavy metal in soils and extraction techniques undertaken under the auspices of BCR of the Comission of the European Communities. Internationak Journal of Environmental and Analitical Chemistry. 51. pp. 135151.

    • Search Google Scholar
    • Export Citation
  • Ure, A.M., Quevauviller, Ph., Muntau, H., Griepink, B. 1993. b. Specation of heavy metal in soils and sediments – an account of the improvements and harmonisations of extraction techniques undertaken under the auspecies of the BCR of the Comission of the European Communities. Internationak Journal of Environmental and Analitical Chemistry. 51. pp. 135151.

    • Search Google Scholar
    • Export Citation
  • USGS LP DAAC Data Pool Database, 2012: http://e4eil01.cr.usgs.gov:22000/WebAccess/drill?attrib=esdt&esdt=MOD13Q1.5&group=MOLT.

  • Wang, S. Z. Zhao, Z. H. Xia, B. Qiu, H. Morel, J. L. Qiu, R. L. 2014. A fuzzy-based methodology for an aggregative environmental risk assessment of restored soil. Pedosphere. 24(2): 220231.

    • Search Google Scholar
    • Export Citation
  • Waterstone, M. 1994. Institutional analysis and water resources management. In: Druckstein, L., Parent, E., Natural Resources Management. Kluver, Dordecht.

    • Search Google Scholar
    • Export Citation
  • Zadeh, L. A. 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on SMC, 1(1):2844.

    • Search Google Scholar
    • Export Citation
  • Zadeh, L.A. 1965. Fuzzy sets, Information and Control 8, pp.338353.

  • Zhao, S. X. 1986. Discussion on fuzzy clustering. In: Proceedings of the Eighth International Conference on Pattern Recognition. IEEE Press. New York. pp. 612614.

    • Search Google Scholar
    • Export Citation
  • Zhu, A. X. Wang, R. Qiao, J. Qin, C.Z. Chen, Y. Liu, J. Du, F. 2014. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology. 214. pp. 128138.

    • Search Google Scholar
    • Export Citation
  • Zhu, A. X. Yang, L. Li, B. Qin, C. Pei, T. Liu, B. 2010. Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma 155. pp. 164174.

    • Search Google Scholar
    • Export Citation
  • Zhu, A-X. Band, L. E. Dutton., B. Nimlos, T. J. 1996. Automated soil inference under fuzzy logic. Ecological Modelling. 90. pp. 123145.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2023 4 70 2
Nov 2023 1 28 0
Dec 2023 103 9 3
Jan 2024 54 108 1
Feb 2024 35 12 0
Mar 2024 30 0 0
Apr 2024 12 0 0