A lézerdiffrakciós szemcseanalízis egy korszerű módszer a talajmechanikai vizsgálatokban, ám egy egységes mérési szabvány bevezetése (akár műszerhez köthetően) nagymértékben növelné a mérések reprodukálhatóságát. A mérések tekintetében kiemelt szerepe van az előkészítő módszereknek (talajszerkezetet kialakító kötőanyagok roncsolása, elemi szemcsék diszpergálása), azonban ezen a téren is hiányzik az egységes szabványosítás. A tanulmányozott közlemények alapján megállapítható, hogy mind az optimális mintaelőkészítési módszer, mind pedig a legmegfelelőbb műszerbeállítás nagymértékben függ a mérni kívánt minta fizikai és kémiai sajátságaitól. A mérési eredmények hagyományos ülepítéses módszerrel kapott eredményekkel történő összehasonlítására szolgáló konverziós módszerek (frakció mérethatárváltások, illetve konverziós egyenletek) használhatósága is talajminta- és LDM vizsgálati módszer-függő. A lézeres szemcseanalízis alkalmazása a talajok aggregátum-stabilitás vizsgálata során ígéretes módszertani lehetőség, ám a mérések értelmezése és az összahasonlíthatóság megteremtése végett ezen a téren is elkerülhetetlen a szabványosítás.
Allen, T. A. 1990. Particle size measurement. 4th ed., Chapman and Hall. London.
Amézketa, E., Aragüés, R., Carranza, R. & Urgel, B. 2003. Macro- and microaggregate stability of soils determined by a combination of wet-sieving and laserray diffraction. Spanish Journal of Agricultural Research. 1 (4). 83–94.
Antinoro, C., Bagarello, V., Ferro, V., Giordano, G. & Iovino, M. 2012. Testing the shape-similarity hypothesis between particle-size distribution and water retention for Sicilian soils. Journal of Agricultural Engineering. 43. 114–122.
Arriaga, F. J., Lowery, B. & Mays, M. D., 2006. A fast method for determining soil particle size distribution using laser instrument. Soil Sci. 171. 663–674.
Balashov, E., Kren, J. & Prochazkova, B. 2010. Influence of plant residue management on microbial properties and water-stable aggregates of two agricultural soils. Int. Agrophys. 24. 9–14.
Balázs, R., Németh, T., Makó, A., Kovács Kis, V. & Keresztes, M. 2011. A mechanikai összetétel meghatározása során alkalmazott minta-előkészítés talajásványtani hatása. In: LIII. Georgikon Napok konferenciakiadványa. Keszthely. 2011. Szept. 29-30. 73–83.
Barna, GY., Szabó, J., Bakacsi, ZS., Koós, S., László, P., Hauk, G., Rajkai, K. & Makó, A. 2015. Effect of particle size limit values on predicted soil hydraulic conductivity. In Proc. of “Transport of Water, Chemicals and Energy in the Soil- Plant-Atmosphere System”. 22nd Poster day (Ed.: Čelková, A. ). Institute of Hydrology of SAS. Bratislava, November 12, 2015. 16–23.
Beckman Coulter: Users manual for Beckman-Coulter LS Series. Brea, California, USA: www.beckmancoulter.com
Beuselinck, L., Govers, G., Poesen, J., Degraer, G. & Froyen, L. 1998. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. Catena. 32. 193–208.
Bieganowski, A., Chojecki, T., Ryżak, M., Sochan, A. & Lamorski, K. 2013. Methodological aspects of fractal dimension estimation on the basis of particle size distribution. Vadose Zone J. 12 (1). 1–9.
Bieganowski, A., Łagód, G., Ryżak, M., Montusiewicz, A., Chomczyńska, M. & Sochan, A. 2012. Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S. 19. 597–608.
Bieganowski, A., Ryżak, M. & Witkowska-Walczak, B. 2010. Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Miner. 45. 23–34.
Bittelli, M., Campbell, G. S. & Flury, M. 1999. Characterization of particle-size distribution in soils with fragmentation model. Soil Sci. Soc. Am. J. 63. 782–788.
Blott, S. J. & Pye, K. 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experi-mental investigation of instrument sensitivity and the effect of particle shape. Sedimentology. 53. 671–685.
Booth, A. C., Fullen, M. A., Jankauskas, B. & Jankauskienė, G. 2003. International calibration of the textural properties of Lithuanian eutric albeluvisols. Žeměs ûkio mokslai. 4. 3–10.
Bortoluzzi, E. C., Poleto, C., Baginski, Á. J. & DA Silva, V. R. 2010. Aggregation of subtropical soil under liming: a study using laser diffraction. Rev. Bras. Ciênc. Solo. 34 (3). 725–734.
Bouma, J. 1989. Using soil survey data for quantitative land evaluation. In: Advances in Soil Science (Ed.: Stewart, B. A.). 177–213.
Brzeziñska, M., Nosalewicz, M., Pasztelan, M. & Wlodarczyk, T. 2012. Methane production and consumption in loess soil at different slope position. Scientific World J., Article ID 620270.
Buah-Bassuah, P. K., Euzzor, S., Francini, F., Quansah, G. W. & Sansoni, P. 1988. Soil textural classification by a photosedimentation method. Appl. Opt. 37. 586–593.
Budhu, M., Giese, R. F., Campbell, G. & Baumgrass, L. 1991. The permeability of soils with organic fluidds. Canadian Geotechnical Journal. 28. 140–147.
Buurman, P., Pape, TH. & Muggler, C. C. 1997. Laser grain-size determination in soil genetic studies. 1. Practical problems. Soil Sci. 162. 211–218.
Buurman, P., Pape, TH., Reijneveld, J. A., De Jong, F. & Van Gelder, E. 2001. Laser diffraction and pipette-method grain sizing of Dutch sediments: correlation for fine fractions of marine, fluvial, and loess samples. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 80. 49–57.
Bürkholz, A. & Polke, R. 1984. Laser diffraction spectrometers/Experience in particle size analysis. Part. Part. Syst. Charact. 1. 153–160.
Centeri, CS., Szalai, Z., Jakab, G., Barta, K., Farsang, A., Szabó, SZ. & Bíró, ZS. 2015. Soil erodibility calculations based on different particle size distribution measurements. Hun. Geo. Bull. 64. 17–23.
Chappell, A. 1998. Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction. Catena. 31. 271–281.
Clifton, J., McDonald, P., Plater, A. & Oldfield, F. 1999. An investigation into the efficiency of particle size separation using Stokes' measurement. Earth Surf. Process. Landf. 24. 725–730.
Cooper, L. R., Haverland, R. L., Hendricks, D. M. & Knisel, W. G. 1984. Microtrac particle-size analyzer: an alternative particle-size determination method for sediment and soils. Soil Sci. 138 (2). 138–146.
Czibulya, ZS., Tombácz, E., Szegi, T., Michéli, E. & Zsolnay, Á. 2010. Standard state of soil dispersions for rheological measurements. Appl. Clay Sci. 48. 594–601.
De Boer, G. B. J., De Weerd, C., Thoenes, D. & Goossens, H. W. J. 1987. Laser diffraction spectrometry: Fraunhofer versus Mie scattering. Part. Part. Syst. Charact. 4. 14–19.
Di Gléria, J., Klimes-Szmik, A. & Dvoracsek, M. 1957. Talajfizika és Talajkolloidika. Akadémiai Kiadó, Budapest.
Di Stefano, C., Ferro, V. & Mirabile, S. 2010. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst. Eng. 106. 205–215.
Di Stefano, C., Ferro, V. & Mirabile, S. 2011. Testing the grain-size distribution determined by laser diffractometry for sicilian soils. Journal of Agricultural Engineering. 3. 39–46.
Dragun, J. 1998. The soil chemistry of hazardous materials. 2nd ed. Amherst. Massachusetts.
Ertli, T., Marton, A. & Földényi, R. 2004. Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere. 57. 771–779.
Eshel, G., Levy, G. J., Mingelgrin, U. & Singer, M. J. 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68. 736–743.
Fedotov, G. N., Shein, E. V., Putlyaev, V. I., Arkhangel’Skaya, T. A., Eliseev, A. V. & Milanovskii, E. YU. 2007. Physicochemical bases of differences between the sedimentometric and laser-diffraction techniques of soil particle-size Analysis. Eurasian Soil Sci. 40 (3). 281–288.
Fenton, O., Vero, S., Ibrahim, T. G., Murphy, P. N. C., Sherriff, S. C. & Huallacháin, D. Ó. 2015. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates. J. Contam Hydrol. 182. 16–24.
Ferro, V. & Mirabile, S. 2009. Comparing particle size distribution analysis by sedimentation and laser diffraction method. Journal of Agricultural Engineering 2. 35–43.
Fisher, P., Aumann, C., Chia, K., O'halloran, N. & Chandra, S. 2017. Adequacy of laser diffraction forsoil particle size analysis. PLoS ONE. 12. (5). e0176510.
Fristensky, A. J. & Grismer, M. E. 2009. Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA. Catena. 79. 93–102.
FRITSCH: Users manual for Fritsch Laser Particle Sizer Analysette 22 Nanotec Measuring Unit. Idar-Oberstein, D: FRITSCH GmbH — Sizing and Miling www.fritsch-international.com
Gantenbein, D., Schoelkopf, J., Matthews, G. P. & Gane, P. A. C. 2011. Determining the size distribution-defined aspect ratio of platy particles. Appl Clay Sci. 53 (4). 544–552.
Gee, G. W. & Bauder, J. W. 1986. Particle-size analysis. In: Methods of soil analysis. Part 1. (Ed.: Klute, A.) 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 383–411.
Genrich, D. A. & Bremner, J. M. 1972. A reevaluation of the ultrasonic vibration method of dispersing soils. Soil Sci. Soc. Amer. Proc. 36. 944–947.
Goossens, D. 2008. Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology. 55. 65–96.
Goossens, D., Buck, J., Teng, Y., Robins, C. & Goldstein, H. L. 2014. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils. Soil Sci. Soc. Am. J. 78. 881–893.
Guzmán, G., Gómez, J. A. & Giráldez, J. V. 2010. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry. Geophysical Research Abstracts Vol. 12, EGU2010-4422-1.
Hajnos, M., Lipiec, J., Swieboda, R., Sokołowska, Z. & Witkowska-Walczak, B. 2006. Complete characterization of pore size distribution of tilled and orchard soil using water retention curve, mercury porosimetry, nitrogen adsorption, and water desorption methods. Geoderma. 135. 307–314.
Hall, A. D. 1904. The mechanical analysis of soils and the composition of the fractions resulting therefrom. J. Chem. Soc. Trans. 85. 950–963.
Hamamoto, S., Moldrup, P., Kawamoto, K. & Komatsu, T. 2009. Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils. Vadose Zone J. 8. 986–995.
Hernádi, H., Makó, A., Bieganowski, A. & Ryźak, M. 2012. Talajminták különböző szabványok szerint előkészített szemcseösszetételének meghatározása ülepítéses és optikai eljárással. Talajvédelem Különszám. 227–236.
Hernádi, H., Makó, A., Kucsera, S., Szabóné Kele, G. & Sisák, I. 2008. A talaj mechanikai összetételének meghatározása különböző módszerekkel. Talajvédelem különszám. 105–114.
Hirleman, E. D., Oeehsk, V. & Chigier, N. A. 1984. Response characteristics of laser diffraction particle size analysers: optical sample volume extent and lens effects. Opt. Eng. 23. 610–619.
ISO 11277: 2009 (E). Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation. International Organization for Standarization, Geneva, Switzerland.
ISO 13320: 1999. Particle size analysis – laser diffraction methods – part 1. International Organization for Standarization, Geneva, Switzerland.
Jackson, M. L. 1958. Soil chemical analysis. Prentice Hall. Englewood Cliffs, N.J.
Jena, R. K., Jagadeeswaran, R. & Sivasamy, R. 2013. Analogy of soil parameters in particle size analysis through laser diffraction techniques. Indian Journal of Hill Farming. 26. 79–83.
Joó, SZ., Tóth, J. & Földényi, R. 2015. Characterization of salt- and surfactantcontaining sandy soil extracts by laser light methods. International Agrophysics 29. 291–298.
Jozefaciuk, G. & Czachor, H. 2014. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of a new method to study water stability. Geoderma. 221-222. 1–10.
Kemper, W. D. & Rosenau, R. C. 1986. Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1. (Ed.: Klute, A.). 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 425–442.
Kenkilä, J. 2005. The laser diffraction grain size analysis of late miocene floodplain sediments from lantian, in Shaanxi Province, Northern China. Master’s thesis. University of Helsinki. Department of Geology Faculty of Mathematics and Natural Sciences. Helsinki
Kerry, R., Rawlins, B. G., Oliver, M. A. & Lacinska, A. M. 2009. Problems with determining the particle size distribution of chalk soil and some of their implications. Geoderma. 152. 324–337.
Kondrlova, E., Igaz, D. & Horak, J. 2015. Effect of calculation models on particle size distribution estimated by laser diffraction. The Journal of Ege University Faculty of Agriculture. Special Issue. 21–27.
Konert, M. & Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology. 44. 523–535.
Kowalenko, C. G. & Babuin, D. 2013. Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples. Geoderma, 193-194. 22–28.
Kun, Á., Katona, O., Sipos, GY. & Barta, K. 2013. Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples. Journal of Environmental Geography. 6. 49–54.
Kuráž, V., Frouz, J., Kuráž, M., Makó, A., Šustr, V., Cejpek, J., Romanov, O. V. & Abakumov, V. 2012. Changes in some physical properties of soils in the chronose-quence of self-overgrown dumps of the Sokolov quarry–dump complex, Czechia. Eurasian Soil Sci. 45. (3) 266–272.
Lamorski, K., Bieganowski, A., Ryżak, M., Sochan, A., Sławiński, C. & Stelmach, W. 2014. Assessment of the usefulness of particle size distribution measured by laser diffraction for soil water retention modelling. J. Plant Nutr. Soil Sci. 177. 803–813.
Le Bissonnais, Y. 1996. Aggregates stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47. 425–437.
Liu, T. K., Odell, R. T., Etter, W. C. & Thornburn, T. H. 1966. Comparison of clay contents determined by hydrometer and pipette methods using reduced major axis analysis. Soil Sci. Soc. Am. Proc. 30. 665–669.
Loizeau, J-L., Arbouille, D., Santiago, S. & VERNET J-P. 1994. Evaluation of a wide range laser diffraction grain size analyzer for use with sediments. Sedimentology. 41. 353–361.
Loveland, P. J. & Whalley, W. R. 1991. Particle size analysis. In: Soil and environmental analysis, physical methods (Eds.: Smith, K. A. & Mullins, C. E.). Marcel Dekker Inc. New York. 281–314.
Lu, N., Ristow, G. H. & Likos, W. I. 2000. The Accuracy of hydrometer analysis for fine-grained clay particles. Geotech. Test. J. 23. 487–495.
Ma, Z., Merkus, H. G., De Smet J. G. A. E., Heffels, C. & Scarlett, B. 2000. New developments in particle characterization by laser diffraction: size and shape. Powder Technology. 111. 66–78.
Madarász, B., Jakab, G., Szalai, Z. & Juhos, K. 2012. Lézeres szemcseösszetétel elemzés néhány előkészítő eljárásának vizsgálata nagy szervesanyag-tartalmú talajokon. Agrokémia és Talajtan. 61. 381–398.
Makó, A., Herczeg, E. F. Kardos, A., Tóth, J., Hauk, G., Rajkai, K., Hernádi, H., Varga, T. & BARNA, GY., 2016a. Methodological experiences of particle size distribution analysis by laser diffraction method. In: 23rd International Poster Day. Bratislava, 10th November 2016. 98–107.
Makó, A. & Hernádi, H. 2010. A talajok szemcseösszetételének vizsgálata során alkalmazott különböző előkészítési módszerek összehasonlító értékelése. In: Mérnökgeológia, kőzetmechanika (Szerk.: Török Á. & Vásárhelyi B.). Műegyetemi Kiadó, Budapest. 101–108.
Makó, A., Máté, F., Tóth, M., László, K. & Németh, T. 2002. A különböző szabványos módszerek szerint mért agyagtartalom és néhány egyéb talajfizikai paraméter összefüggésének vizsgálata. XVI. Országos Környezetvédelmi Konferencia és Szakkiállítás. Siófok. 2002. szeptember 11-13. 231–239.
Makó, A., Rajkai, K., HERNÁDI H. & HAUK G. 2014. Comparison of different settings and pre-treatments in soil particlesize distribution measurement by laserdiffraction method. Agrokémia és Talajtan. 63. 19–28.
Makó, A., Szabó, J., BAKACSI, ZS., Koós, S., Hauk, G., Janek, H., Rajkai, K. & BARNA, GY., 2016b. Applicability of laser diffraction analyses in soil physics practice. Review on Agriculture and Rural Development. 5. 32–37.
Makó, A., Tóth, B., Rajkai, K., Szabó, J., Bakacsi, Zs. & BARNA, Gy., 2016c. Particle size distribution measurements by laser diffraction method in practical soil physics. Abstract book of 11th International Conference on Agrophysics. 26-28 September 2016, Lublin, Poland. 148.
Malvern Operators Guide1999. Malvern Press, Malvern, UK.
Mason, J. A., Greene, R. S. & Joeckel, R. M. 2011. Laser diffraction analysis of the disintegration of aeolian sedimentary aggregates in water. Catena, 87. 107–118.
Mason, J., Kasmerchak, C. & Liang, M. 2016. Monitoring aggregate disintegration with laser diffraction: A tool for studying soils as sediments. Geophysical Research Abstracts 18. EGU2016-5279.
Matsuyama, T. & Yamamoto, H. 2004. Particle shape and laser diffraction: a discussion of particle shape problem. J. Disper. Sci. Technol. 25. 1–8.
Matthews, M. D. 1991. The effect of grain shape and density on the size measurement. In: Principles, methods, and applications of particle size analysis (Ed.: Syvitski, J. P. M.). Cambridge University Press. Cambridge. 22–33.
McCave, I. N., Bryant, R. J., Cook, H. F. & Coughanowr, C. A. 1986. Evaluation of a laser-diffraction size analyzer for use with natural sediments. Research Methods Papers. 561–564.
McKeague, J. A. 1978. Manual on soil sampling and methods of analysis. 2nd ed. Canadian Society of the Soil Science. Ottawa.
Miller, B. A. & Schaetzl, R. J. 2012. Precision of soil particle size analysis using laser diffractometry. Soil Sci. Soc. Am. J. 76. 1719–1727.
Miller, M. P., Radcliffe, D. E. & Miller, D. M. 1988. An historical perspective on the theory and practice of soil mechanical analysis. J. Agron. Education. 17. 24–28.
MSZ-08 0205-78 1979. A talaj fizikai és vízgazdálkodási tulajdonságainak vizsgálata. MÉM, Budapest
Muggler, C. C., PAPE, TH. & Buurman, P. 1997. Laser grain-size determination in soil genetic studies 2. Clay content, clay formation, and aggregation in some Brazilian Oxisols. Soil Sci. 162. 219–228.
Nemes, A., Wösten, J. H. M., Lilly, A. & OUDe Voshaar, J. H. 1999. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma. 90. 187–202.
Orzechowski, M., Smólczyński, S., Długosz, J. & Pożniak, P. 2014. Measurements of texture of soils formed from glaciolimnic sediments by areometric method, pipette method and laser diffraction method. Soil Science Annual. 65 (2). 72–79.
Özer, M., Orhan, M. & Işik, N. 2010. Effect of particle optical properties on size distribution orf soils obtained by laser diffraction. Environ. Eng. Geosci. 16. 163–173.
Pabst, W., Kunes, K., Havrda, J. & Gregorova, E. 2000. A note on particle size analyses of kaolins and clays. Journal of the European Ceramic Society. 20. 1429–1437.
Paz-Ferreiro, J., Vázquez, E. V. & Miranda, J. G. V. 2010. Assessing soil particlesize distribution on experimental plots with similar texture under different management systems using multifractal parameters. Geoderma. 160. 47–56.
Peng, H., Horton, R., Lei, T., Dai, Z. & Wang, X. 2015. A modified method for estimating fine and coarse fractal dimensions of soil particle size distributions based on laser diffraction analysis. J. Soil Sediment. 15 (4). 937–948.
Pieri, L., Bittelli, M. & Pisa, P. R. 2006. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma, 135. 118–132.
Polakowski, C., Ryżak, M., Bieganowski, A., Sochan, A., Bartmiński, P., Dębicki, R. & Stelmach, W. 2015. The reasons for incorrect measurements of the mass fraction ratios of fine and coarse material by laser diffraction. Soil Sci. Soc. Am. J. 79 (1). 30–36.
Polakowski, C., Sochan, A., Bieganowski, A., Ryżak, M., Földényi, R. & Tóth, J. 2014. Influence of the sand particle shape on particle size distribution measured by laser diffraction method. Int. Agrophys. 28 (2). 195–200.
Pye, K. & Blott, S. J. 2004. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Sci. Int. 144. 19–27.
Rajkai, K. 1988. A talaj víztartó képessége és különböző talajtulajdonságok összefüggéseinek vizsgálata. Agrokémia és Talajtan. 36-37. 15–30.
Rajkai, K., Kabos, S., Van Genuchten, M. TH. & Jansson, P. E. 1996. Estimation of water-retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Sci. 161. 832–846.
Ramaswamy, V. & Rao, P. S. 2006. Grain size analysis of sediments from the northern Andaman sea: Comparison of laser diffraction and sieve-pipette techniques. Journal of Coastal Research. 22. 1000–1009.
Rawlins, B. G., Wragg, J. & Lark, R. M. 2013. Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. Eur. J. Soil Sci. 64. 92–103.
Roberson, S. & Weltje, G. J. 2014. Inter-instrument comparison of particle-size analysers. Sedimentology. 61. 1157–1174.
Ryżak, M. & Bieganowski, A. 2010. Determination of particle size distributionof soil using laser diffraction – comparison with areometric method. Int. Agrophys. 24. 177–181.
Ryżak, M. & Bieganowski, A. 2011. Methodological aspects of determining soil paricle-size distibution using the laser diffraction method. J. Plant Nutr. Soil Sci. 174. 624–633.
Ryżak, M., Walczak, R. T. & Niewczas, J. 2004. Porównanie rozkładu granulometrycznego cząstek glebowych metodą dyfrakcji laserowej i metodą sedymentacyjną. Acta Agrophysica. 41. 509–518. (lengyelül)
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., Fischer, P. & Stauch, G. 2016. Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. Catena. 137. 392–405.
Segal, E., Shouse, P. J., Bradford, S. A., Skaggs, T. H. & Corwin, D. L. 2009. Measuring particle size distribution using laser diffraction: implications for predicting soil hydraulic properties. Soil Sci. 174 (12). 639–645.
Serban, R. D., Sipos, GY., Popescu, M., Urdea, P., Onaca, A. & Ladányi, ZS. 2015. Comparative grai-size measurements for validating sampling and pretreatment techniques in terms of solifluction landforms, Southern Carpathians, Romania. Journal of Environmental Geography. 81 (1–2). 39–47.
Shein, E. V., Milanovskii, E. Y. & Molov, A. Z. 2006. The effect of organic matter on the difference between particle-size distribution data obtained by the sedimentometric and laser diffraction methods. Eurasian Soil Sci. 139. (Suppl. 1) 84–90.
Shein, E.V., Lazarev, V. I., Aidiev, A.YU., Sakunkonchak, T., Kuznetsov, M.YA., Milanovskii, E.YU. & Khaidapova, D. D. 2011. Changes in the physical properties of typical Chernozems of Kursk oblast under the conditions of a longterm stationary experiment. Eurasian Soil Sci. 44. 1097–1103.
Sochan, A., Bieganowski, A. Bartmiński, P., Ryżak, M., Brzezińska, M., Dębicki, R., Stuczyński, T. & Polakowski, C. 2015. Use of the laser diffraction method for assessment of the pipette method. Soil Sci. Soc. Am. J. 179. 37–42.
Sochan, A., Bieganowski, A., Ryżak, M., Dobrowolski, R. & Bartmiński, P. 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 26. 99–102.
Sochan, A., Polakowski, C. & Łagód, G. 2014. Impact of optical indices on particle size distribution of activated sludge measured by laser diffraction method. Ecol Chem. Eng. S. 211 (1). 137–145.
Taubner, H., Roth, B. & Tippkötter, R. 2009. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J. Plant Nutr. Soil Sci. 172. 161–171.
Thomas, K. A. & Redsteer, M. H. 2016. Vegetation of semi-stable rangeland dunes of the Navajo Nation, Southwestern USA. Arid Land Res. Manag. 30. 400–411.
Tombácz, E. 2002. Adsorption from electrolyte solutions. In: Adsorption: theory, modeling, and analysis (Ed.: Tóth, J.). Marcel Dekker. New York. 711–742.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. & Tóth, G. 2015. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 66. 226–238.
Tóth, G., Makó, A. & Máté, F. 2009. Designation of local varieties in the Hungarian soil classification system: Remarks from a viewpoint of land evaluation application. Eurasian Soil Sci. 42. 1448–1453.
Usowicz, B., Lipiec, J. & Usowicz, J. B. 2008. Thermal conductivity in relation to porosity and hardness to terrestrial porous media. Planet. Space Sci., 56. 438–447.
Van Reeuwijk, L. P. , (ED.) 2002. Procedures for soil analysis. Technical Paper 9. 6th ed. International Soil Reference and Information Centre. Wageningen. The Netherlands.
Vandecasteele, B. & De Vos, B. 2001. Relationship between soil textural fractions determined by sieve-pipette method and laser diffractometry. IBW Br R 15. 1–19.
Várallyay, GY. 1993. A fizikai talajféleség meghatározása. In: Talaj- és agrokémiai vizsgálati módszerkönyv. 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata (Ed.: Buzás, I.). INDA 4231 Kiadó. Budapest. 45–57.
Varga, GY., Cserháti, CS., Kovács, J. & Szalai, Z. 2016. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation. Aeolian Research. 22. 1–12.
Vdović, N., Obhođaš, J. & Pikelj, K. 2010. Revisiting the particle-size distribution of soils: comparison of different methods and sample pre-treatments. Eur. J. Soil Sci. 61. 854–864.
Virto, I., Gartzia-Bengoetxea, N. & Fernández-Ugalde, O. 2011. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere. 211 (5). 566–572.
Walling, D. E., Owens, P. N., Waterfall, B. D., Leeks, G. J. L. & Wass, P. D. 2000. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. Sci. Total Environ. 251–252. 205–222.
Wang, W., Liu, J., Zhao, B., Zhang, J., Li, X. & Yan, Y. 2015. Critical evaluation of particle size distribution models using soil data obtained with a laser diffraction method. PLoS ONE. 10 (4). e0125048.
WANG, W-P., LIU, J-L., ZHANG, J-B., LI, X-P., CHENG, Y-N., XIN, W-W. & YAN, Y-F. 2013. Evaluation of laser diffraction analysis of particle size distribution of typical soils in China and comparison with the sieve-pipette method. Soil Science. 178. 194–204.
Weaver, J. W., Charbeneau, R. J., Tauxe, J. D., Lien, B. K. & Provost, J. B. 1994. The hyd1rocarbon spill screening model (HSSM). 1. US EPA. EPA/600/R-94/039a.
Weiner, B. B. 1984. Particle and droplet sizing using Fraunhofer diffraction. Chem. Anal. 73. 135–172.
Wösten, J. H. M., Pachepsky, YA. A. & Rawls, W. J. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251. 123–150.
Xu, R. & Di Guida, O. A. 2003. Comparison of sizing small particles using different technologies. Powder Technol. 132. 145–153.
Yang, X., Zhang, Q., Li, X., Jia, X., Wei, X. & Shao, M. 2015. Determination of Soil Texture by Laser Diffraction Method. Soil Sci. Soc. Am. J. 76 (6). 1556–1566.
Zobeck, T. M. 2004. Rapid soil particle size analyses using laser diffraction. Appl. Eng. Agric. 20. 633–639.