View More View Less
  • 1 Talajtani és Agrokémiai Intézet, Budapest
  • 2 Természet- és Környezetföldrajzi Tanszék, Pécs
  • 3 Növénytermesztéstani és Talajtani Tanszék, Keszthely
  • 4 Talajtani és Agrokémiai Tanszék, Gödöllő
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

A lézerdiffrakciós szemcseanalízis egy korszerű módszer a talajmechanikai vizsgálatokban, ám egy egységes mérési szabvány bevezetése (akár műszerhez köthetően) nagymértékben növelné a mérések reprodukálhatóságát. A mérések tekintetében kiemelt szerepe van az előkészítő módszereknek (talajszerkezetet kialakító kötőanyagok roncsolása, elemi szemcsék diszpergálása), azonban ezen a téren is hiányzik az egységes szabványosítás. A tanulmányozott közlemények alapján megállapítható, hogy mind az optimális mintaelőkészítési módszer, mind pedig a legmegfelelőbb műszerbeállítás nagymértékben függ a mérni kívánt minta fizikai és kémiai sajátságaitól. A mérési eredmények hagyományos ülepítéses módszerrel kapott eredményekkel történő összehasonlítására szolgáló konverziós módszerek (frakció mérethatárváltások, illetve konverziós egyenletek) használhatósága is talajminta- és LDM vizsgálati módszer-függő. A lézeres szemcseanalízis alkalmazása a talajok aggregátum-stabilitás vizsgálata során ígéretes módszertani lehetőség, ám a mérések értelmezése és az összahasonlíthatóság megteremtése végett ezen a téren is elkerülhetetlen a szabványosítás.

  • Allen, T. A. 1990. Particle size measurement. 4th ed., Chapman and Hall. London.

  • Amézketa, E., Aragüés, R., Carranza, R. & Urgel, B. 2003. Macro- and microaggregate stability of soils determined by a combination of wet-sieving and laserray diffraction. Spanish Journal of Agricultural Research. 1 (4). 8394.

    • Search Google Scholar
    • Export Citation
  • Antinoro, C., Bagarello, V., Ferro, V., Giordano, G. & Iovino, M. 2012. Testing the shape-similarity hypothesis between particle-size distribution and water retention for Sicilian soils. Journal of Agricultural Engineering. 43. 114122.

    • Search Google Scholar
    • Export Citation
  • Arriaga, F. J., Lowery, B. & Mays, M. D., 2006. A fast method for determining soil particle size distribution using laser instrument. Soil Sci. 171. 663674.

    • Search Google Scholar
    • Export Citation
  • Balashov, E., Kren, J. & Prochazkova, B. 2010. Influence of plant residue management on microbial properties and water-stable aggregates of two agricultural soils. Int. Agrophys. 24. 914.

    • Search Google Scholar
    • Export Citation
  • Balázs, R., Németh, T., Makó, A., Kovács Kis, V. & Keresztes, M. 2011. A mechanikai összetétel meghatározása során alkalmazott minta-előkészítés talajásványtani hatása. In: LIII. Georgikon Napok konferenciakiadványa. Keszthely. 2011. Szept. 29-30. 7383.

    • Search Google Scholar
    • Export Citation
  • Barna, GY., Szabó, J., Bakacsi, ZS., Koós, S., László, P., Hauk, G., Rajkai, K. & Makó, A. 2015. Effect of particle size limit values on predicted soil hydraulic conductivity. In Proc. of “Transport of Water, Chemicals and Energy in the Soil- Plant-Atmosphere System”. 22nd Poster day (Ed.: Čelková, A. ). Institute of Hydrology of SAS. Bratislava, November 12, 2015. 1623.

    • Search Google Scholar
    • Export Citation
  • Beckman Coulter: Users manual for Beckman-Coulter LS Series. Brea, California, USA: www.beckmancoulter.com

  • Beuselinck, L., Govers, G., Poesen, J., Degraer, G. & Froyen, L. 1998. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. Catena. 32. 193208.

    • Search Google Scholar
    • Export Citation
  • Bieganowski, A., Chojecki, T., Ryżak, M., Sochan, A. & Lamorski, K. 2013. Methodological aspects of fractal dimension estimation on the basis of particle size distribution. Vadose Zone J. 12 (1). 19.

    • Search Google Scholar
    • Export Citation
  • Bieganowski, A., Łagód, G., Ryżak, M., Montusiewicz, A., Chomczyńska, M. & Sochan, A. 2012. Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S. 19. 597608.

    • Search Google Scholar
    • Export Citation
  • Bieganowski, A., Ryżak, M. & Witkowska-Walczak, B. 2010. Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Miner. 45. 2334.

    • Search Google Scholar
    • Export Citation
  • Bittelli, M., Campbell, G. S. & Flury, M. 1999. Characterization of particle-size distribution in soils with fragmentation model. Soil Sci. Soc. Am. J. 63. 782788.

    • Search Google Scholar
    • Export Citation
  • Blott, S. J. & Pye, K. 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experi-mental investigation of instrument sensitivity and the effect of particle shape. Sedimentology. 53. 671685.

    • Search Google Scholar
    • Export Citation
  • Booth, A. C., Fullen, M. A., Jankauskas, B. & Jankauskienė, G. 2003. International calibration of the textural properties of Lithuanian eutric albeluvisols. Žeměs ûkio mokslai. 4. 310.

    • Search Google Scholar
    • Export Citation
  • Bortoluzzi, E. C., Poleto, C., Baginski, Á. J. & DA Silva, V. R. 2010. Aggregation of subtropical soil under liming: a study using laser diffraction. Rev. Bras. Ciênc. Solo. 34 (3). 725734.

    • Search Google Scholar
    • Export Citation
  • Bouma, J. 1989. Using soil survey data for quantitative land evaluation. In: Advances in Soil Science (Ed.: Stewart, B. A.). 177213.

    • Search Google Scholar
    • Export Citation
  • Brzeziñska, M., Nosalewicz, M., Pasztelan, M. & Wlodarczyk, T. 2012. Methane production and consumption in loess soil at different slope position. Scientific World J., Article ID 620270.

    • Search Google Scholar
    • Export Citation
  • Buah-Bassuah, P. K., Euzzor, S., Francini, F., Quansah, G. W. & Sansoni, P. 1988. Soil textural classification by a photosedimentation method. Appl. Opt. 37. 586593.

    • Search Google Scholar
    • Export Citation
  • Budhu, M., Giese, R. F., Campbell, G. & Baumgrass, L. 1991. The permeability of soils with organic fluidds. Canadian Geotechnical Journal. 28. 140147.

    • Search Google Scholar
    • Export Citation
  • Buurman, P., Pape, TH. & Muggler, C. C. 1997. Laser grain-size determination in soil genetic studies. 1. Practical problems. Soil Sci. 162. 211218.

    • Search Google Scholar
    • Export Citation
  • Buurman, P., Pape, TH., Reijneveld, J. A., De Jong, F. & Van Gelder, E. 2001. Laser diffraction and pipette-method grain sizing of Dutch sediments: correlation for fine fractions of marine, fluvial, and loess samples. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 80. 4957.

    • Search Google Scholar
    • Export Citation
  • Bürkholz, A. & Polke, R. 1984. Laser diffraction spectrometers/Experience in particle size analysis. Part. Part. Syst. Charact. 1. 153160.

    • Search Google Scholar
    • Export Citation
  • Centeri, CS., Szalai, Z., Jakab, G., Barta, K., Farsang, A., Szabó, SZ. & Bíró, ZS. 2015. Soil erodibility calculations based on different particle size distribution measurements. Hun. Geo. Bull. 64. 1723.

    • Search Google Scholar
    • Export Citation
  • Chappell, A. 1998. Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction. Catena. 31. 271281.

    • Search Google Scholar
    • Export Citation
  • Clifton, J., McDonald, P., Plater, A. & Oldfield, F. 1999. An investigation into the efficiency of particle size separation using Stokes' measurement. Earth Surf. Process. Landf. 24. 725730.

    • Search Google Scholar
    • Export Citation
  • Cooper, L. R., Haverland, R. L., Hendricks, D. M. & Knisel, W. G. 1984. Microtrac particle-size analyzer: an alternative particle-size determination method for sediment and soils. Soil Sci. 138 (2). 138146.

    • Search Google Scholar
    • Export Citation
  • Czibulya, ZS., Tombácz, E., Szegi, T., Michéli, E. & Zsolnay, Á. 2010. Standard state of soil dispersions for rheological measurements. Appl. Clay Sci. 48. 594601.

    • Search Google Scholar
    • Export Citation
  • De Boer, G. B. J., De Weerd, C., Thoenes, D. & Goossens, H. W. J. 1987. Laser diffraction spectrometry: Fraunhofer versus Mie scattering. Part. Part. Syst. Charact. 4. 1419.

    • Search Google Scholar
    • Export Citation
  • Di Gléria, J., Klimes-Szmik, A. & Dvoracsek, M. 1957. Talajfizika és Talajkolloidika. Akadémiai Kiadó, Budapest.

  • Di Stefano, C., Ferro, V. & Mirabile, S. 2010. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst. Eng. 106. 205215.

    • Search Google Scholar
    • Export Citation
  • Di Stefano, C., Ferro, V. & Mirabile, S. 2011. Testing the grain-size distribution determined by laser diffractometry for sicilian soils. Journal of Agricultural Engineering. 3. 3946.

    • Search Google Scholar
    • Export Citation
  • Dragun, J. 1998. The soil chemistry of hazardous materials. 2nd ed. Amherst. Massachusetts.

  • Ertli, T., Marton, A. & Földényi, R. 2004. Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere. 57. 771779.

    • Search Google Scholar
    • Export Citation
  • Eshel, G., Levy, G. J., Mingelgrin, U. & Singer, M. J. 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68. 736743.

    • Search Google Scholar
    • Export Citation
  • Fedotov, G. N., Shein, E. V., Putlyaev, V. I., Arkhangel’Skaya, T. A., Eliseev, A. V. & Milanovskii, E. YU. 2007. Physicochemical bases of differences between the sedimentometric and laser-diffraction techniques of soil particle-size Analysis. Eurasian Soil Sci. 40 (3). 281288.

    • Search Google Scholar
    • Export Citation
  • Fenton, O., Vero, S., Ibrahim, T. G., Murphy, P. N. C., Sherriff, S. C. & Huallacháin, D. Ó. 2015. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates. J. Contam Hydrol. 182. 1624.

    • Search Google Scholar
    • Export Citation
  • Ferro, V. & Mirabile, S. 2009. Comparing particle size distribution analysis by sedimentation and laser diffraction method. Journal of Agricultural Engineering 2. 3543.

    • Search Google Scholar
    • Export Citation
  • Fisher, P., Aumann, C., Chia, K., O'halloran, N. & Chandra, S. 2017. Adequacy of laser diffraction forsoil particle size analysis. PLoS ONE. 12. (5). e0176510.

    • Search Google Scholar
    • Export Citation
  • Fristensky, A. J. & Grismer, M. E. 2009. Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA. Catena. 79. 93102.

    • Search Google Scholar
    • Export Citation
  • FRITSCH: Users manual for Fritsch Laser Particle Sizer Analysette 22 Nanotec Measuring Unit. Idar-Oberstein, D: FRITSCH GmbH — Sizing and Miling www.fritsch-international.com

  • Gantenbein, D., Schoelkopf, J., Matthews, G. P. & Gane, P. A. C. 2011. Determining the size distribution-defined aspect ratio of platy particles. Appl Clay Sci. 53 (4). 544552.

    • Search Google Scholar
    • Export Citation
  • Gee, G. W. & Bauder, J. W. 1986. Particle-size analysis. In: Methods of soil analysis. Part 1. (Ed.: Klute, A.) 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 383411.

    • Search Google Scholar
    • Export Citation
  • Genrich, D. A. & Bremner, J. M. 1972. A reevaluation of the ultrasonic vibration method of dispersing soils. Soil Sci. Soc. Amer. Proc. 36. 944947.

    • Search Google Scholar
    • Export Citation
  • Goossens, D. 2008. Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology. 55. 6596.

    • Search Google Scholar
    • Export Citation
  • Goossens, D., Buck, J., Teng, Y., Robins, C. & Goldstein, H. L. 2014. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils. Soil Sci. Soc. Am. J. 78. 881893.

    • Search Google Scholar
    • Export Citation
  • Guzmán, G., Gómez, J. A. & Giráldez, J. V. 2010. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry. Geophysical Research Abstracts Vol. 12, EGU2010-4422-1.

    • Search Google Scholar
    • Export Citation
  • Hajnos, M., Lipiec, J., Swieboda, R., Sokołowska, Z. & Witkowska-Walczak, B. 2006. Complete characterization of pore size distribution of tilled and orchard soil using water retention curve, mercury porosimetry, nitrogen adsorption, and water desorption methods. Geoderma. 135. 307314.

    • Search Google Scholar
    • Export Citation
  • Hall, A. D. 1904. The mechanical analysis of soils and the composition of the fractions resulting therefrom. J. Chem. Soc. Trans. 85. 950963.

    • Search Google Scholar
    • Export Citation
  • Hamamoto, S., Moldrup, P., Kawamoto, K. & Komatsu, T. 2009. Effect of particle size and soil compaction on gas transport parameters in variably saturated, sandy soils. Vadose Zone J. 8. 986995.

    • Search Google Scholar
    • Export Citation
  • Hernádi, H., Makó, A., Bieganowski, A. & Ryźak, M. 2012. Talajminták különböző szabványok szerint előkészített szemcseösszetételének meghatározása ülepítéses és optikai eljárással. Talajvédelem Különszám. 227236.

    • Search Google Scholar
    • Export Citation
  • Hernádi, H., Makó, A., Kucsera, S., Szabóné Kele, G. & Sisák, I. 2008. A talaj mechanikai összetételének meghatározása különböző módszerekkel. Talajvédelem különszám. 105114.

  • Hirleman, E. D., Oeehsk, V. & Chigier, N. A. 1984. Response characteristics of laser diffraction particle size analysers: optical sample volume extent and lens effects. Opt. Eng. 23. 610619.

    • Search Google Scholar
    • Export Citation
  • ISO 11277: 2009 (E). Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation. International Organization for Standarization, Geneva, Switzerland.

  • ISO 13320: 1999. Particle size analysis – laser diffraction methods – part 1. International Organization for Standarization, Geneva, Switzerland.

  • Jackson, M. L. 1958. Soil chemical analysis. Prentice Hall. Englewood Cliffs, N.J.

  • Jena, R. K., Jagadeeswaran, R. & Sivasamy, R. 2013. Analogy of soil parameters in particle size analysis through laser diffraction techniques. Indian Journal of Hill Farming. 26. 7983.

    • Search Google Scholar
    • Export Citation
  • Joó, SZ., Tóth, J. & Földényi, R. 2015. Characterization of salt- and surfactantcontaining sandy soil extracts by laser light methods. International Agrophysics 29. 291298.

    • Search Google Scholar
    • Export Citation
  • Jozefaciuk, G. & Czachor, H. 2014. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of a new method to study water stability. Geoderma. 221-222. 110.

    • Search Google Scholar
    • Export Citation
  • Kemper, W. D. & Rosenau, R. C. 1986. Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1. (Ed.: Klute, A.). 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 425442.

    • Search Google Scholar
    • Export Citation
  • Kenkilä, J. 2005. The laser diffraction grain size analysis of late miocene floodplain sediments from lantian, in Shaanxi Province, Northern China. Master’s thesis. University of Helsinki. Department of Geology Faculty of Mathematics and Natural Sciences. Helsinki

    • Search Google Scholar
    • Export Citation
  • Kerry, R., Rawlins, B. G., Oliver, M. A. & Lacinska, A. M. 2009. Problems with determining the particle size distribution of chalk soil and some of their implications. Geoderma. 152. 324337.

    • Search Google Scholar
    • Export Citation
  • Kondrlova, E., Igaz, D. & Horak, J. 2015. Effect of calculation models on particle size distribution estimated by laser diffraction. The Journal of Ege University Faculty of Agriculture. Special Issue. 2127.

    • Search Google Scholar
    • Export Citation
  • Konert, M. & Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology. 44. 523535.

    • Search Google Scholar
    • Export Citation
  • Kowalenko, C. G. & Babuin, D. 2013. Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples. Geoderma, 193-194. 2228.

    • Search Google Scholar
    • Export Citation
  • Kun, Á., Katona, O., Sipos, GY. & Barta, K. 2013. Comparison of pipette and laser diffraction methods in determining the granulometric content of fluvial sediment samples. Journal of Environmental Geography. 6. 4954.

    • Search Google Scholar
    • Export Citation
  • Kuráž, V., Frouz, J., Kuráž, M., Makó, A., Šustr, V., Cejpek, J., Romanov, O. V. & Abakumov, V. 2012. Changes in some physical properties of soils in the chronose-quence of self-overgrown dumps of the Sokolov quarry–dump complex, Czechia. Eurasian Soil Sci. 45. (3) 266272.

    • Search Google Scholar
    • Export Citation
  • Lamorski, K., Bieganowski, A., Ryżak, M., Sochan, A., Sławiński, C. & Stelmach, W. 2014. Assessment of the usefulness of particle size distribution measured by laser diffraction for soil water retention modelling. J. Plant Nutr. Soil Sci. 177. 803813.

    • Search Google Scholar
    • Export Citation
  • Le Bissonnais, Y. 1996. Aggregates stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47. 425437.

    • Search Google Scholar
    • Export Citation
  • Liu, T. K., Odell, R. T., Etter, W. C. & Thornburn, T. H. 1966. Comparison of clay contents determined by hydrometer and pipette methods using reduced major axis analysis. Soil Sci. Soc. Am. Proc. 30. 665669.

    • Search Google Scholar
    • Export Citation
  • Loizeau, J-L., Arbouille, D., Santiago, S. & VERNET J-P. 1994. Evaluation of a wide range laser diffraction grain size analyzer for use with sediments. Sedimentology. 41. 353361.

    • Search Google Scholar
    • Export Citation
  • Loveland, P. J. & Whalley, W. R. 1991. Particle size analysis. In: Soil and environmental analysis, physical methods (Eds.: Smith, K. A. & Mullins, C. E.). Marcel Dekker Inc. New York. 281314.

    • Search Google Scholar
    • Export Citation
  • Lu, N., Ristow, G. H. & Likos, W. I. 2000. The Accuracy of hydrometer analysis for fine-grained clay particles. Geotech. Test. J. 23. 487495.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., Merkus, H. G., De Smet J. G. A. E., Heffels, C. & Scarlett, B. 2000. New developments in particle characterization by laser diffraction: size and shape. Powder Technology. 111. 6678.

    • Search Google Scholar
    • Export Citation
  • Madarász, B., Jakab, G., Szalai, Z. & Juhos, K. 2012. Lézeres szemcseösszetétel elemzés néhány előkészítő eljárásának vizsgálata nagy szervesanyag-tartalmú talajokon. Agrokémia és Talajtan. 61. 381398.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Herczeg, E. F. Kardos, A., Tóth, J., Hauk, G., Rajkai, K., Hernádi, H., Varga, T. & BARNA, GY., 2016a. Methodological experiences of particle size distribution analysis by laser diffraction method. In: 23rd International Poster Day. Bratislava, 10th November 2016. 98107.

  • Makó, A. & Hernádi, H. 2010. A talajok szemcseösszetételének vizsgálata során alkalmazott különböző előkészítési módszerek összehasonlító értékelése. In: Mérnökgeológia, kőzetmechanika (Szerk.: Török Á. & Vásárhelyi B.). Műegyetemi Kiadó, Budapest. 101108.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Máté, F., Tóth, M., László, K. & Németh, T. 2002. A különböző szabványos módszerek szerint mért agyagtartalom és néhány egyéb talajfizikai paraméter összefüggésének vizsgálata. XVI. Országos Környezetvédelmi Konferencia és Szakkiállítás. Siófok. 2002. szeptember 11-13. 231239.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Rajkai, K., HERNÁDI H. & HAUK G. 2014. Comparison of different settings and pre-treatments in soil particlesize distribution measurement by laserdiffraction method. Agrokémia és Talajtan. 63. 1928.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Szabó, J., BAKACSI, ZS., Koós, S., Hauk, G., Janek, H., Rajkai, K. & BARNA, GY., 2016b. Applicability of laser diffraction analyses in soil physics practice. Review on Agriculture and Rural Development. 5. 3237.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Tóth, B., Rajkai, K., Szabó, J., Bakacsi, Zs. & BARNA, Gy., 2016c. Particle size distribution measurements by laser diffraction method in practical soil physics. Abstract book of 11th International Conference on Agrophysics. 26-28 September 2016, Lublin, Poland. 148.

    • Search Google Scholar
    • Export Citation
  • Malvern Operators Guide 1999. Malvern Press, Malvern, UK.

  • Mason, J. A., Greene, R. S. & Joeckel, R. M. 2011. Laser diffraction analysis of the disintegration of aeolian sedimentary aggregates in water. Catena, 87. 107118.

    • Search Google Scholar
    • Export Citation
  • Mason, J., Kasmerchak, C. & Liang, M. 2016. Monitoring aggregate disintegration with laser diffraction: A tool for studying soils as sediments. Geophysical Research Abstracts 18. EGU2016-5279.

    • Search Google Scholar
    • Export Citation
  • Matsuyama, T. & Yamamoto, H. 2004. Particle shape and laser diffraction: a discussion of particle shape problem. J. Disper. Sci. Technol. 25. 18.

    • Search Google Scholar
    • Export Citation
  • Matthews, M. D. 1991. The effect of grain shape and density on the size measurement. In: Principles, methods, and applications of particle size analysis (Ed.: Syvitski, J. P. M.). Cambridge University Press. Cambridge. 2233.

    • Search Google Scholar
    • Export Citation
  • McCave, I. N., Bryant, R. J., Cook, H. F. & Coughanowr, C. A. 1986. Evaluation of a laser-diffraction size analyzer for use with natural sediments. Research Methods Papers. 561564.

  • McKeague, J. A. 1978. Manual on soil sampling and methods of analysis. 2nd ed. Canadian Society of the Soil Science. Ottawa.

  • Miller, B. A. & Schaetzl, R. J. 2012. Precision of soil particle size analysis using laser diffractometry. Soil Sci. Soc. Am. J. 76. 17191727.

    • Search Google Scholar
    • Export Citation
  • Miller, M. P., Radcliffe, D. E. & Miller, D. M. 1988. An historical perspective on the theory and practice of soil mechanical analysis. J. Agron. Education. 17. 2428.

    • Search Google Scholar
    • Export Citation
  • MSZ-08 0205-78 1979. A talaj fizikai és vízgazdálkodási tulajdonságainak vizsgálata. MÉM, Budapest

  • Muggler, C. C., PAPE, TH. & Buurman, P. 1997. Laser grain-size determination in soil genetic studies 2. Clay content, clay formation, and aggregation in some Brazilian Oxisols. Soil Sci. 162. 219228.

    • Search Google Scholar
    • Export Citation
  • Nemes, A., Wösten, J. H. M., Lilly, A. & OUDe Voshaar, J. H. 1999. Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma. 90. 187202.

    • Search Google Scholar
    • Export Citation
  • Orzechowski, M., Smólczyński, S., Długosz, J. & Pożniak, P. 2014. Measurements of texture of soils formed from glaciolimnic sediments by areometric method, pipette method and laser diffraction method. Soil Science Annual. 65 (2). 7279.

    • Search Google Scholar
    • Export Citation
  • Özer, M., Orhan, M. & Işik, N. 2010. Effect of particle optical properties on size distribution orf soils obtained by laser diffraction. Environ. Eng. Geosci. 16. 163173.

    • Search Google Scholar
    • Export Citation
  • Pabst, W., Kunes, K., Havrda, J. & Gregorova, E. 2000. A note on particle size analyses of kaolins and clays. Journal of the European Ceramic Society. 20. 14291437.

    • Search Google Scholar
    • Export Citation
  • Paz-Ferreiro, J., Vázquez, E. V. & Miranda, J. G. V. 2010. Assessing soil particlesize distribution on experimental plots with similar texture under different management systems using multifractal parameters. Geoderma. 160. 4756.

    • Search Google Scholar
    • Export Citation
  • Peng, H., Horton, R., Lei, T., Dai, Z. & Wang, X. 2015. A modified method for estimating fine and coarse fractal dimensions of soil particle size distributions based on laser diffraction analysis. J. Soil Sediment. 15 (4). 937948.

    • Search Google Scholar
    • Export Citation
  • Pieri, L., Bittelli, M. & Pisa, P. R. 2006. Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma, 135. 118132.

    • Search Google Scholar
    • Export Citation
  • Polakowski, C., Ryżak, M., Bieganowski, A., Sochan, A., Bartmiński, P., Dębicki, R. & Stelmach, W. 2015. The reasons for incorrect measurements of the mass fraction ratios of fine and coarse material by laser diffraction. Soil Sci. Soc. Am. J. 79 (1). 3036.

    • Search Google Scholar
    • Export Citation
  • Polakowski, C., Sochan, A., Bieganowski, A., Ryżak, M., Földényi, R. & Tóth, J. 2014. Influence of the sand particle shape on particle size distribution measured by laser diffraction method. Int. Agrophys. 28 (2). 195200.

    • Search Google Scholar
    • Export Citation
  • Pye, K. & Blott, S. J. 2004. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Sci. Int. 144. 1927.

    • Search Google Scholar
    • Export Citation
  • Rajkai, K. 1988. A talaj víztartó képessége és különböző talajtulajdonságok összefüggéseinek vizsgálata. Agrokémia és Talajtan. 36-37. 1530.

    • Search Google Scholar
    • Export Citation
  • Rajkai, K., Kabos, S., Van Genuchten, M. TH. & Jansson, P. E. 1996. Estimation of water-retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Sci. 161. 832846.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V. & Rao, P. S. 2006. Grain size analysis of sediments from the northern Andaman sea: Comparison of laser diffraction and sieve-pipette techniques. Journal of Coastal Research. 22. 10001009.

    • Search Google Scholar
    • Export Citation
  • Rawlins, B. G., Wragg, J. & Lark, R. M. 2013. Application of a novel method for soil aggregate stability measurement by laser granulometry with sonication. Eur. J. Soil Sci. 64. 92103.

    • Search Google Scholar
    • Export Citation
  • Roberson, S. & Weltje, G. J. 2014. Inter-instrument comparison of particle-size analysers. Sedimentology. 61. 11571174.

  • Ryżak, M. & Bieganowski, A. 2010. Determination of particle size distributionof soil using laser diffraction – comparison with areometric method. Int. Agrophys. 24. 177181.

    • Search Google Scholar
    • Export Citation
  • Ryżak, M. & Bieganowski, A. 2011. Methodological aspects of determining soil paricle-size distibution using the laser diffraction method. J. Plant Nutr. Soil Sci. 174. 624633.

    • Search Google Scholar
    • Export Citation
  • Ryżak, M., Walczak, R. T. & Niewczas, J. 2004. Porównanie rozkładu granulometrycznego cząstek glebowych metodą dyfrakcji laserowej i metodą sedymentacyjną. Acta Agrophysica. 41. 509518. (lengyelül)

    • Search Google Scholar
    • Export Citation
  • Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., Fischer, P. & Stauch, G. 2016. Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. Catena. 137. 392405.

    • Search Google Scholar
    • Export Citation
  • Segal, E., Shouse, P. J., Bradford, S. A., Skaggs, T. H. & Corwin, D. L. 2009. Measuring particle size distribution using laser diffraction: implications for predicting soil hydraulic properties. Soil Sci. 174 (12). 639645.

    • Search Google Scholar
    • Export Citation
  • Serban, R. D., Sipos, GY., Popescu, M., Urdea, P., Onaca, A. & Ladányi, ZS. 2015. Comparative grai-size measurements for validating sampling and pretreatment techniques in terms of solifluction landforms, Southern Carpathians, Romania. Journal of Environmental Geography. 81 (1–2). 3947.

    • Search Google Scholar
    • Export Citation
  • Shein, E. V., Milanovskii, E. Y. & Molov, A. Z. 2006. The effect of organic matter on the difference between particle-size distribution data obtained by the sedimentometric and laser diffraction methods. Eurasian Soil Sci. 139. (Suppl. 1) 8490.

    • Search Google Scholar
    • Export Citation
  • Shein, E.V., Lazarev, V. I., Aidiev, A.YU., Sakunkonchak, T., Kuznetsov, M.YA., Milanovskii, E.YU. & Khaidapova, D. D. 2011. Changes in the physical properties of typical Chernozems of Kursk oblast under the conditions of a longterm stationary experiment. Eurasian Soil Sci. 44. 10971103.

    • Search Google Scholar
    • Export Citation
  • Sochan, A., Bieganowski, A. Bartmiński, P., Ryżak, M., Brzezińska, M., Dębicki, R., Stuczyński, T. & Polakowski, C. 2015. Use of the laser diffraction method for assessment of the pipette method. Soil Sci. Soc. Am. J. 179. 3742.

    • Search Google Scholar
    • Export Citation
  • Sochan, A., Bieganowski, A., Ryżak, M., Dobrowolski, R. & Bartmiński, P. 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 26. 99102.

    • Search Google Scholar
    • Export Citation
  • Sochan, A., Polakowski, C. & Łagód, G. 2014. Impact of optical indices on particle size distribution of activated sludge measured by laser diffraction method. Ecol Chem. Eng. S. 211 (1). 137145.

    • Search Google Scholar
    • Export Citation
  • Taubner, H., Roth, B. & Tippkötter, R. 2009. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J. Plant Nutr. Soil Sci. 172. 161171.

    • Search Google Scholar
    • Export Citation
  • Thomas, K. A. & Redsteer, M. H. 2016. Vegetation of semi-stable rangeland dunes of the Navajo Nation, Southwestern USA. Arid Land Res. Manag. 30. 400411.

    • Search Google Scholar
    • Export Citation
  • Tombácz, E. 2002. Adsorption from electrolyte solutions. In: Adsorption: theory, modeling, and analysis (Ed.: Tóth, J.). Marcel Dekker. New York. 711742.

    • Search Google Scholar
    • Export Citation
  • Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. & Tóth, G. 2015. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 66. 226238.

    • Search Google Scholar
    • Export Citation
  • Tóth, G., Makó, A. & Máté, F. 2009. Designation of local varieties in the Hungarian soil classification system: Remarks from a viewpoint of land evaluation application. Eurasian Soil Sci. 42. 14481453.

    • Search Google Scholar
    • Export Citation
  • Usowicz, B., Lipiec, J. & Usowicz, J. B. 2008. Thermal conductivity in relation to porosity and hardness to terrestrial porous media. Planet. Space Sci., 56. 438447.

    • Search Google Scholar
    • Export Citation
  • Van Reeuwijk, L. P., (ED.) 2002. Procedures for soil analysis. Technical Paper 9. 6th ed. International Soil Reference and Information Centre. Wageningen. The Netherlands.

    • Search Google Scholar
    • Export Citation
  • Vandecasteele, B. & De Vos, B. 2001. Relationship between soil textural fractions determined by sieve-pipette method and laser diffractometry. IBW Br R 15. 119.

    • Search Google Scholar
    • Export Citation
  • Várallyay, GY. 1993. A fizikai talajféleség meghatározása. In: Talaj- és agrokémiai vizsgálati módszerkönyv. 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata (Ed.: Buzás, I.). INDA 4231 Kiadó. Budapest. 4557.

    • Search Google Scholar
    • Export Citation
  • Varga, GY., Cserháti, CS., Kovács, J. & Szalai, Z. 2016. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation. Aeolian Research. 22. 112.

    • Search Google Scholar
    • Export Citation
  • Vdović, N., Obhođaš, J. & Pikelj, K. 2010. Revisiting the particle-size distribution of soils: comparison of different methods and sample pre-treatments. Eur. J. Soil Sci. 61. 854864.

    • Search Google Scholar
    • Export Citation
  • Virto, I., Gartzia-Bengoetxea, N. & Fernández-Ugalde, O. 2011. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere. 211 (5). 566572.

    • Search Google Scholar
    • Export Citation
  • Walling, D. E., Owens, P. N., Waterfall, B. D., Leeks, G. J. L. & Wass, P. D. 2000. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. Sci. Total Environ. 251–252. 205222.

    • Search Google Scholar
    • Export Citation
  • Wang, W., Liu, J., Zhao, B., Zhang, J., Li, X. & Yan, Y. 2015. Critical evaluation of particle size distribution models using soil data obtained with a laser diffraction method. PLoS ONE. 10 (4). e0125048.

    • Search Google Scholar
    • Export Citation
  • WANG, W-P., LIU, J-L., ZHANG, J-B., LI, X-P., CHENG, Y-N., XIN, W-W. & YAN, Y-F. 2013. Evaluation of laser diffraction analysis of particle size distribution of typical soils in China and comparison with the sieve-pipette method. Soil Science. 178. 194204.

    • Search Google Scholar
    • Export Citation
  • Weaver, J. W., Charbeneau, R. J., Tauxe, J. D., Lien, B. K. & Provost, J. B. 1994. The hyd1rocarbon spill screening model (HSSM). 1. US EPA. EPA/600/R-94/039a.

  • Weiner, B. B. 1984. Particle and droplet sizing using Fraunhofer diffraction. Chem. Anal. 73. 135172.

  • Wösten, J. H. M., Pachepsky, YA. A. & Rawls, W. J. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251. 123150.

    • Search Google Scholar
    • Export Citation
  • Xu, R. & Di Guida, O. A. 2003. Comparison of sizing small particles using different technologies. Powder Technol. 132. 145153.

  • Yang, X., Zhang, Q., Li, X., Jia, X., Wei, X. & Shao, M. 2015. Determination of Soil Texture by Laser Diffraction Method. Soil Sci. Soc. Am. J. 76 (6). 15561566.

    • Search Google Scholar
    • Export Citation
  • Zobeck, T. M. 2004. Rapid soil particle size analyses using laser diffraction. Appl. Eng. Agric. 20. 633639.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 6 1 0
Dec 2020 2 0 0
Jan 2021 3 1 2
Feb 2021 3 0 0
Mar 2021 12 0 0
Apr 2021 0 1 2
May 2021 0 0 0