A víztartó-képesség meghatározása, eszközeit és módszertanát tekintve, jelentős előrelépéseken ment keresztül az elmúlt megközelítőleg 60 évben, mind a közvetlen mérések, mind a modellek területén, például a dinamikus, spektroszkópiai és digitális képazonosítási eljárások kidolgozása, fejlesztése, illetve a mintázatfelismerésen alapuló pedotranszfer típusú becslő eljárások fejlesztése, validálása, beépítése szoftverekbe, almodellekbe. A pórustér hierarchikus hálózati rendszerként való új értelmezésével, illetve a geometriai alapú, a szemifizikus, majd a statisztikus közelítő eljárásokkal lehetővé vált a pórustér és az abban lejátszódó folyamatok mind pontosabb jellemzése.
A talaj víztartó-képességét — és ezáltal a pórusméret-eloszlását is — többmódusú függvénnyel jellemző egyszerű, vagy összetett összefüggések lehetőséget nyújtanak a porozitás, illetve a porozitás-változási jelenségek, folyamatok (aggregátumstabilitás, tömődöttség változása, pórusdeformációs jelenségek stb.) tanulmányozására, valamint a hiszterézis számszerűsítésére és mind pontosabb meghatározására, akár az SWRC teljes nyomástartományában.
A modellezés különböző léptékeiben értelmezett talajjellemzők közötti összefüggések vizsgálatához a hidrológiai talajtulajdonságokat és az áramlási folyamatokat egyaránt meghatározó talajszerkezet szerepének számszerűsítése mind a mai napig kihívást jelent a talajtani, hidrológiai, környezetvédelmi szakterületen dolgozó kutatók számára.
Az NAPL típusú szennyezőanyagok felszín alatti terjedését szimuláló modellek jellemzően a víztartó-képesség használatával állítják fel az NAPL-visszatartó képességre (elsődleges bemeneti paraméter) alkalmazott összefüggéseket. Ezen összefüggések nem veszik figyelembe a különböző fizikai-, kémiai és fizikokémiai tulajdonságokkal jellemezhető folyadékok, illetve a folyadékok és a szilárd fázis között lezajló különböző mértékű kölcsönhatások jelentőségét (duzzadás, dezaggregáció stb). Több különböző környezetvédelmi célú kutatás (hulladéklerakók agyagszigetelésének kompatibilitási tesztjei, mikromorfológiai vizsgálatok, illetve dinamikus NAPL visszatartó- és vezetőképesség mérési módszertan fejlesztésére vonatkozó vizsgálatok stb.) eredményei alapján a víztartó-képességből kiinduló számítási eljárások alkalmazhatósága a talajok NAPL-visszatartó képességének meghatározására megkérdőjelezhető.
Megoldást jelenthet, hogy a víztartó-képesség görbék illesztésére alkalmazott parametrikus eljárásokkal az NAPL-visszatartó képesség görbék is meghatározhatóak. A különböző polaritású folyadékokkal felvett folyadékvisszatartó-képesség görbék alaki jellemzői alapján igazolt a differenciált porozitás különböző mértékű megváltozása a talaj vízzel és nem vizes fázisú szerves folyadékokkal való telítése során. A víztartó-képesség becslésére képzett szemifizikus és empirikus eljárások kidolgozásának és fejlesztésének módszertana szerint az NAPL-visszatartó képesség meghatározására alkalmas PTF típusú becslő összefüggések is képezhetőek, melyek pontossága elsősorban 0–1500 kPa nyomástartományban megfelelő. A porozitásváltozás mértékére vonatkozóan a víz- és NAPL-visszatartó képesség görbék alapján meghatározott pórusméret-eloszlási görbék statisztikai jellemzői nyújthatnak információt. A multimodális függvények alkalmazásával lehetővé válhat az NAPL-visszatartó képesség görbék végponti értékei és a becslésbe vont talajtulajdonságok közötti öszefüggések pontosabb feltérképezése. Szükséges a PTF típusú NAPL-visszatartó képesség becslő eljárások fejlesztése; pl. az NAPL-visszatartó képesség görbék meghatározására alkalmas parametrikus eljárás megválasztása; a többfázisú folyadéktranszport modellezésben kulcsfontosságú telítettségi értékek (pl. maradvány telítettség), illetve az azokhoz rendelhető kapilláris nyomás (pl. belépési küszöbnyomás) meghatározása és a folyadékvisszatartó-képesség görbék függvény paraméterei közötti konverziós lehetőségek kidolgozása.
Acutis, M. & Donatelli, M. 2002. SOILPAR 2.00: Software to estimate soil hydrological parameters and functions. Eur. J. Agron. 8. (3–4) 373–377.
Ahuja, L. R., Bames, B. B., Cassel, D. K., Bruce, R. B. & Nofziger, D. L. 1988. Effect of assumed unit gradient during drainage on the determination of unsaturated hydraulic conductivity and infiltration parameters. Soil Sci. 145. 235–243.
Ahuja, L.R., Naney, J. W. & Williams, R. D. 1985. Estimating soil water characteristics from simpler properties or limited data. Soil Sci Soc. Am. J. 49. 1100–1105.
Akbari, A. & Ghoshal, S. 2015. Bioaccessible porosity in soil aggregates and implications for biodegradation of high molecular weight petroleumcompounds. Environ. Sci. Technol. 49. 14368–14375.
Alaoui, A., Lipiec, J. & Gerke, H. H. 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Till. Res. 115–116. 1–15.
Alizadeh, A. H. & Piri, M. 2014. Three-phase flow in porous media: A review of experimental studies on relative permeability. Rev. Geophys. 52. 468–521.
AMER 2012. Prediction of hydraulic conductivity as related to pore size distribution in unsaturated soils. Soil Sci. 174. (9) 508–515.
Amyx, J. W., Bass, D. M. & Whitting, R. L. 1960. Petroleum reservoir engineering. Physical properties. McGraw-Hill Book Company. New York.
Anderson, D. A. & Brown, K. W. 1981. Organic leachate effects on the permeability of clay liner. In: Proceedings of the seventh annual research symposium on land disposal: Hazardous Waste. EPA-600/9-81-002b. Cincinnati, OH. US.
Anderson, D. C., Brown, K. & Thomas, J. C. 1985. Conductivity of compacted clay soils to water and organic liquids. Water Management & Research. 3. 339–349.
Anderson, M. P., Woessner, W. W. & Hunt, R. J. 2015. Applied Groundwater modeling. 2nd ed. Elsevier.
Arya, L. M., Leij, F. J., Shouse, P. J. & Van Genuchten M. TH. 1999. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Am. J. 63. 1063–1070.
Arya, L. M. & Paris, J. F. 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45. 1023–1030.
Asgarzadeh, H., Mosaddeghi, M. R., Dexter, A. R., Mahboubi, A. A. & Neyshabouri, M. R. 2014. Determination of soil available water for plants: Consistency between laboratory and field measurements. Geoderma. 226–227. 8–20.
Assouline, S. 2002. Modeling soil compaction under uniaxial compression. Soil Sci. Soc. Am. J. 66. 1784–1787.
Assouline, S. 2006. Modeling the relationship between soil bulk density and the water retention curve. Vadoze Zone J. 5. 554–563.
Assouline, S. & Rouault, Y. 1997. Modeling the relationships between particle and pore size distributions in multicomponent sphere packs: application to the water retention curve. Colloids Surf. A Physicochem Eng. Asp. 127. 201–210.
Assouline, S., Tessier, D. & Bruand, A. 1998. A conceptual model of the soil water retention curve. Water Resour. Res. 34. (2) 223–231.
ASTM 1996. Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM, West Conshohcken, PA, USA https://www.astm.org/Standards/D6836.htm
Batjes, N. H. 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management. 25. 124–127.
Baver, L. D. 1956. Soil Physics. 3rd edition. John Wiley & Sons, Inc. New York.
Ben-Hur, M. & Lado, M. 2008. Effects of soil wetting conditions on seal formation, runoff, and soil loss in arid and semiarid soils. Adv. Ser. Agric. Res. 46. 191–202.
Ben-Hur, M., Yolcu, G., Uysal, H., Lado, M. & Paz, A. 2009. Soil structure changes: aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Aust. J. Soil Res. 47. 688–696.
Beven, K. J. & Germann, P. F. 1982. Macropores and water flow in soils. Wat. Resour. Res. 18. (5) 1311–1325.
Boulding, R. S. 1995. Practical handbook of soil vadose zone and groundwater contamination. Boca Raton, Fla.
Bouma, J. 1989. Using soil survey data for quantitative land evaluation. In: Stewart, B. A. (ed.), Adv. Soil. Sci.9. 177–213.
Bouma, J. A., Boersma, A. J. & Schoonderbeek, D. 1977. The function of different types of macropores during saturated flow through four swelling soil horizons. Soil. Sci. Soc. Am. J. 41. 945–950.
Bradford, S. A. & Leij, F. J. 1995. Wettability effects on scaling two- and three-fluid capillary pressure-saturation relations. Environ. Sci. Technol. 29. 1446–1455.
Bradford, S. A., Rathfelder, K. M., Lang, J. & Abriola, L. M. 2003. Entrapment and dissolution of DNAPL sin heterogeous porous media. J. Contam. Hydrol. 67. 133–157.
Braudeau, E. & Mohtar., R. H. 2004. Water potential in nonrigid unsaturated soilwater medium. Water Resour. Res. 40. W05108.
Braun, C., Helming, R. & Manthey, S. 2005. Macro-scale effective conductivity relationship for two-phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation relationship. J. Contam. Hydrol. 76. 1–2. 47–80.
Brewer, R. 1977. Fabric and mineral analysis of soils. John Wiley & Sons. NY.
Bruand, A., Fernandez, P. N. & Duval, O. 2003. Use of class pedotransfer functions based on texture and bulk density of clods to generate water retention curves. Soil Use Manage. 19. 232–242.
Brooks, R. H. & Corey, A. T. 1964. Hydraulic properties of porous media. Hydrol. Pap. 3. Colorado State Univ., Fort Collins.
Brutsaert, W. 1966. Probability laws for pore size distributions. Soil Sci. 101. 85–92.
Budhu, M., Giese, R. F., Campbell, G. JR. & Baumgrass, L. 1991. The permeability of soils with organic fluids. Can. Geotech. J. 28. 140–147.
Buzás I. (ed.) 1993. Talaj- és agrokémiai vizsgálati módszerkönyv. 1. INDA 4231 Kiadó. Budapest.
Calciu, I., Simota, C. Vizitiu, O. & Pănoiu, I. 2011. Modelling of soil water retention properties for soil physical quality assessment. Res. J. Agric. Sci. 43. (3) 35–43.
Campbell, G. S. & Shiozawa, S. 1992. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data. In: International workshop on indirect methods for estimating the hydraulic properties of unsaturated soils (eds.: Van Genuchten, M. T., Leij, R. J. & Lund, L. J.) 317–328. Univ. of California. Riverside.
Carsel, R. F. & Parrish, R. S. 1988. Developing joint probability distribution of soil water retention characteristics. Water Resour. Res. 24. 755–769.
Chandler, R. J. & Gutierrez, C. I. 1986. The filter paper method of suction measurement. Géotechnique. 36. 265–268
Chen, L. 2006. Hysteresis and dynamic effects in the relationship between capillary pressure, saturation and air-water interfacial area in porous media. Ph.D. thesis. University of Oklahoma. OK.
Chen, J., Hopmanns, J. W. & Grismer, M. E. 1999. Parameter estimation of two-fluid capillary pressure-saturation and permeability functions. Adv. Water Res. 22. 479–493.
Chen, S., Low, P. F., Cushman, J. H. & Roth, C. B. 1987. Organic compound effects on swelling and flocculation of Upton montmorillonite. Soil Sci. Soc. Am J. 51. 1444–1450.
Cherian, C., Arnepalli, D. N. Dogga, T. S. S., Raviteja, N. B., Gorle, S. V. & Balraj, N. M. 2014. Assessment of grain-size and pore-size distribution using digital image analysis. Proceedings of Indian Geotechnical Conference. IGC-2014. December 18–20. Kakinada. India.
Chertkov, V. Y. 2004. A physically-based model for the water retention curve of clay pastes. J. Hydrol. (Amsterdam). 286. 203–226.
Corey, A. T. 1986. Air permeability. In: Methods of Soil Analysis. (ed.: Klute, A.) 2nd ed. Agyronomy monograph 9. ASA and SSSA. Madison, WI.1121–1136.
Cornelis, W. M., Ronsyn, J., Meirvenne, M. V. & Harman, R. 2001. Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 65. 638–648.
Cushmann, J. H. 1990. Dynamics of fluids in hierarchical porous media. Academic press. San Diego. CA.
Dane, J. H., Oostrom, M. & Missildine, B. C. 1992. An improved method for the determination of capillary pressure-saturation curves involving TCE, water, and air. J. Contam. Hydrol. 11. 69–81.
Demond, A. H. & Roberts, P. V. 1991. Effects of interfacial forces on the two-phase capillary-pressure relationships. Water Resources Research. 27. 423–437.
Dexter, A. R. 2004. Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma. 120. 201–214.
Dexter, A. R., Czyz, E. A., Richard, G. & Reszkowska, A. 2008. A user-friendly water retention function that takes account of the textural and structural pores spaces in soil. Geoderma. 143. 243–253.
Di Gléria, J., Klimes-Szmik, A. & Dvoracsek, M. 1957. Talajfizika és kolloidika. Akadémia Kiadó. Budapest.
Dicarlo, D. A., Sahni, A. & Blunt, M. J. 2000. Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks. SPE J. 5. (1) 82–91.
Dragun, J. 1998. The soil chemistry of hazardous materials. Amherst scientific publishers. Amherst. Massachusetts.
Dullien, F. A. L. 1979. Porous media, fluid transport and pore structure. Academic Press Inc. New York.
Durner, W. 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30. 211–223.
Eckberg, D. K. & Sunada, D. K. 1984. Nonsteady three-phase immiscible fluid distribution in porous media. Water Resour. Res. 20. 1891–1897.
Fayer, M. J. & Simmons, C. S. 1995. Modified soil water retention functions for all matric suctions. Water Resour. Res. 31. (5) 1233–1238.
Fatt, I. 1965. The network model of porous media I. Capillary pressure characteristics. Trans AIME. 207. 141–159.
Fernandez, F. & Quigley, R. M. 1985. Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can. Geotech. J. 22. 205–214.
Ferrero, A. & Lipiec, J. 2000. Determining the effect of trampling on soils in hillslope woodlands. Int. Agrophys. 14. 9–16.
Ferrero, A., Lipiec, J., Turski, M. & Nosalewicz, A. 2007. Stability and sorptivity of soil aggregates in grassed and cultivated sloping vineyards. Polish J. Soil Sci. XL (1) 1–8.
Fodor, N. & Rajkai, K. 2005. Számítógépes program a talajok fizikai és vízgazdálkodási jellemzőinek egyéb talajjellemzőkből történő számítására (TALAJTANonc 1.0). Agrokémia és Talajtan. 54. 25–40.
Forsyth, P. A. 1988. Simulation of nonaqueous phase groundwater contamination. Adv. Water Resour. 11. 74–83.
Fredlund, D. G. & Houston, S. L. 2013. Interpretation of soil-water characteristic curves when volume change occurs as soil suction is changed. In: Advances in unsaturated soils (eds.: CAICEDO et al.) Taylor & Francis Group. London.
Fredlund, D. G. & Xing, A. 1994. Equations for the soil-water characteristic curve. Can. Geotech. J. 31. (3) 521–532.
Gerke, H.H. & Van Genuchten, M. T. 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29. 305–319.
Ghanbarian-Alavijeh, B. & Millán, H. 2009. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma. 151. 224–232.
Ghezzehei, T. A. & Or, D. 2000. Dynamics of soil aggregate coalescence governed by capillary and theoretical processes. Water Resour. Res. 36. 367–379.
Ghezzehei, T. A., Timthy, J. K. & Su, W. W. 2007. Correspondance of the Gardner and van Genuchten-Mualem relative permeability function parameters. Water. Resour. Res. 43. W10417.
Graber, E. R. & Mingelgrin, U. 1994. Clay swelling and regular solution theory. Environ. Sci. Technol. 28. 2360–2365.
Graton, L. C. & Fraser, H. J. 1935. Systematic packing of spheres with particular relation to porosity and permeability. J. Geology. 43. 785–909.
Greenland, D. J. 1977. Soil damage by intensive arable cultivation: temporary or permanent? Phil. Trans. Royal Soc. London. 281. 193–208.
Hajnos, M., Lipiec, J., Swieboda, R., Sokołowska, Z. & Witkowska-Walczak, B. 2006. Complete characterization of pore size distribution of tilled and orchard loamy soil using water retention curve, mercury porosimetry, nitrogen adsorption, and water desorption methods. Geoderma. 135. 307–314.
Håkansson, I. & Lipiec, J. 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Till. Res. 53. 71–85.
Haverkamp, R. & Parlange, J.-Y. 1986. Predicting the water-retention curve from particle-size distribution: I. Sandy soils without organic matter. Soil. Sci. 142. 325–339.
Hassanizadeh, S. M. & Gray., W. G. 1993. Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29. 3389–3405.
Held, R. J. & Celia, M. A. 2001. Modeling support of functional relationships between capillary pressure, interfacial areas and common lines. Adv. Water Resour. 24. 325–343.
Hernádi, H., Makó, A., Kovács, J. & Csatári, T. 2011. The NAPL retention of mineral mixture series containing different clay minerals. Commun. Soil Sci. Plant Anal. 44. (1–4) 390–396.
Hillel, D. 1998. Environmental Soil Physics. Academic Press. San Diego, CA. USA.
Hoag, G. E. & Marley, M. C. 1986. Gasoline residual saturation in saturated uniform aquifer materials. J. Environ. Eng. 112. 586–604.
Horn, R. 2004. Time dependence of soil mechanical properties and pore functions for arable soils. Soil Sci. Soc. Am. J. 68. 1131–1137.
Huang, H. C., Tan, Y. C., Liu, C. W. & Chen, C. H. 2005. A novel hysteresis model in unsaturated soil. Hydrological Processes. 19. 1653–1665.
Huang, M., Fredlund, D. G. & Fredlund, M. 2009. Estimation of SWCCs from grain-size distribution curves for loess soils in china. www. soilvision.com.
Hwang, S. I. & Powers, S. E. 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci. Soc. Am. J. 67. 1103–1112.
Imhoff, P. T., Jaffé, P. R. & Pinder, G. F. 1994. An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour. Res. 30. (2) 307–320.
Ishakoglu, A. & Baytas, A. F. 2005. The influence of contact angle on capillary pressure–saturation relations in a porous medium including various liquids. Int. J. Eng. Sci. 43. (8–9) 744–755.
ISO 11277: 2009 (E). Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation. International Organization for Standarization, Geneva, Switzerland.
Izdebska-Mucha, D. & Trzciński, J. 2008. Effects of petroleum pollution on clay soil microstructure. Geologija. Vilnius. 50. Supplement. 68–74.
Jarvis, N. J., Zavattaro, L., Rajkai, K., Reynolds, W. D., Olsen, P.-A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B. & Jacques, D. 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma. 108. (1–2) 1–17.
Joekar-Niassar, V., Hassanizadeh, S. M. & Dahle, H. K. 2010. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: Dynamic pore-network modelling, J. Fluid. Mech. 655. 38–71.
Khlosi, M., Cornelis, W. M., Douaik, A., Van Genuchten, M. T. & Gabriels, D. 2008. Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone J. 7. (1) 87–96.
Klimes-Szmik A. 1962. A talaj pórusterének beosztása a víz mozgása alapján. Agrokémia és Talajtan. 1. 41 –54.
Klute, A. & Dirksen, C. 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: Methods of soil analysis. Part1. Physical and mineralogical methods (ed.: Klute, A.). 2nd. Edition. American Society of Agronomy. Madison. Wisconsin. 703–735.
Kemper, W. D. & Rosenau, R. C. 1986. Aggregate stability and size distribution. In: Methods of soil analysis. Part 1 (ed.: Klute, A.). 2nd edition. Agronomy monograph. 9. ASA and SSSA. Madison. WI. 425–442.
Kodešová, R., Vignozzi, N., Rohošková, M., Hájková, T., Kočárek, M., Pagliali, M., Kozák, J. & Šimůnek, J. 2009. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. J. Contam. Hydrol. 104. 107–125.
Konert, M. & Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology. 44. 523–535.
Kool, J. B. & Parker, J. C. 1987. Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23. 105–114.
Kosugi, K. 1994. Three-parameter lognormal distribution model for soil water retention. Water. Resour. Res. 30. (4) 891–901.
Kosugi, K. 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 32. (9) 2697–2703.
Kosugi, K. 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore size distribution. Soil. Sci. Am. J. 63. 270–277.
Kutilek, M. & NIELSEN. D. 1994. Soil Hydrology. Catena Verlag, Cremlingen-Destedt.
LADO. M. , PAZ. A. & BEN-HUR. M. 2004. Organic matter and aggregates size interaction in saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68. 234–242.
Lal, R. & Shukla, M. K. 2004. Principles of Soil Physics. Marcel Dekker. New York.
Le Bissonnais, Y. & Arrouays, D. 1997. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci. 48. 39–48.
Lebeau, M. & Konrad, J-M. 2010. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 46. W12554.
Leverett, M.C. 1941. Capillary behavior in porous solids. Trans. AIME. 142. 152–169.
Leverett, M. C. & Lewis, W. B. 1941. Steady flow of gas-oil-water mixtures trough unconsolidated sands. Trans Society of Petroleum Engineering America, Institute of Mining Engineering. 142. 107–116.
Lehmann, P. & Or, D. 2009. Evaporation and capillary coupling across vertical textura contrasts in porous media. Phys. Rev. E. 80. (4) 046318.
Lenhard, R. J. & Brooks, R. H. 1985. Comparison of liquid retention cures with polar and nonpolar liquids. Soil Sci. Am. J. 49. 816–821.
Lenhard, R. J., Oostrom, M. & Dane, J. H. 2004. A constitutive model for air- NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. J. Contam. Hydrol. 71. 261–282.
Lenhard, R. J. & Parker, J. C. 1987. A model for hysteretic constitutive relations governing multiphase flow, 2. Permeability-saturation relations. Water Resour. Res. 23. (12) 2197–2206.
Levy, G. J. & Mamedov, A. I. 2002. High-energy-moisture-characteristic aggregate stability as a predictor for seal formation. Soil Sci. Am. J. 66. 1603–1609.
Li, X. & Zhang, L. M. 2009. Characterization of dual-structure pore-size distribution of soil. Can. Geotec. J. 46. (2) 129–141.
Lin, H. S., McInnes, K. J., Wilding, L. P. & Hallmark, C. T. 1999. Effects of soil morphology on hydraulic properties: II. Hydraulic pedotransfer functions. Soil. Sci. Soc. Am. J. 63. 955–961.
Luckner, L. M., Van Genuchten, M. T. & Nielsen, D. R. 1989. A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25. 2187–2193.
Lowel, S. & Joen, E. S. 1984. Powder surface area and porosity. 3rd edition. Chapman & Hall. London.
Makó, A. 1995. A talaj szilárd fázisa és a szerves folyadékok kölcsönhatásai. Kandidátusi értekezés. Keszthely.
Makó, A., Elek, B., Dunai, A. & Hernádi H. 2009. Comparison of nonaqueous phase liquids conductivity and air permeability of different soils. Commun. Soil.Sci. Plant Anal. 40. (1) 787–799.
Makó A. & Hernádi H. 2012. Kőolajszármazékok a Talajban: Talajfizikai Kutatások. Pannon Egyetem. Veszprém. Magyarország.
Makó, A. & Hernádi, H. 2016. Comparison the pore size distribution of soils saturated by water and NAPL. 23rd International Poster Day and Institute of Hydrology Open Day. Transport of water, chemicals and energy in the soil – plant – atmosphere system. 10th november 2016. 108–124.
Makó, A., Máté, F., Martelli, G. & Ciet, P. 1995. Szénhidrogének gőzadszorpciója különféle talajokon. Agrokémia és Talajtan. 44. 153–180.
Makó, A., Máté, F., Németh, T. & Tóth, M. 2004. Talajminták szerves folyadékvisszatartási izotermáinak meghatározása. Talajtani Vándorgyűlés. Kecskemét 2004. augusztus 24–26.
Makó, A., Rajkai, K., Hernádi, H. & Hauk, G. 2014. Comparison of different settings and pretreatments in soil particle size distribution measurement by laser-diffraction method. Agrokémia és Talajtan. 63. 19–28.
Makó, A., Tóth B., Hernádi H., Farkas CS., Marth P. 2010. Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan. 59. 29–38.
Makó, A., Varga, T., Hernádi, H., Labancz, V., Barna, G. 2017. Talajminták lézeres szemcseanalízisének módszertani tapasztalatai. Agrokémia és Talajtan. 66. 223–250.
Mamedov, A. I., Huang, C. & Levy, G. J. 2006. Antecedent moisture content and aging duration effects on seal formation and erosion in smectitic soils. Soil Sci. Soc. Am. J. 70. 832–843.
Matmon. D. & Hayden, N. J. 2003. Pore space analysis of NAPL distribution in sand– clay media. Adv. Water Resour. 26. 773–785.
McBratney, A. B., Minasny B., Cattle S. R. & Vervoort R. W. 2002. From pedotransfer functions to soil inference systems. Geoderma. 109. 41–73.
Minasny, B., McBratney, A. B. & Bristow, K. L. 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma. 93. 225–253.
Mitchell, J. K. & Madsen, F. T. 1987. Chemical effects on clay hydraulic conductivity. In: Proc. Speciality Conference on Geotechnical practice for waste disposal. 87–116.
Morel-Seytoux, H. J., Meyer, P. D., Nachabe, M., Tourna, J., Van Genuchten, M. T. & Lenhard, R. J. 1996. Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics: Preserving the effective capillary drive. Water Resour. Res. 32. 1251–1258.
Moseley, W. A. & Dhir, V. K. 1996. Capillary pressure–saturation relations in porous media including the effect of wettability. Journal of Hydrology. 178. 33–53.
MSZ-08 0205-78 1979. A talaj fizikai és vízgazdálkodási tulajdonságainak vizsgálata. MÉM, Budapest
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12. 513–521.
Mualem, Y. & Beriozkin, A. 2009. General scaling rules of the híteretic water retention function based on Mualem’s domain theory. Eur. J. Soil. Sci. 60. 652–661.
MUELLER et al. 2010. Assessing agricultural soil quality on a global scale. 9th World Congress of Soil Science : Soil solutions for a changing world 1–6 August 2010. Brisbane. Australia. Published on DVD.
Murray, R. S. & Quirk, J. P. 1982. The physical swelling of clays in solvents. Soil Sci. Soc. Am. J. 46. (4) 865–868.
Nagarajarao, Y. 1994. Pore size distribution measurements in swell-shrink soils. J. Plant. Nutr. Soil. Sci. 157. (2) 81–85.
Nemes, A., Roberts, R. T., Rawls, W. J., Pachepsky, Y. A. & Van Genuchten, M. T. 2008. Software to estimate -33 and -1500 kPa soil water retention using the nonparametric k-nearest neighbor technique. Environ. Modell. Softw. 23. (2) 254–255.
Nemes, A., Schaap, M. G. & Wösten, J. H. M. 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. A. J. 67. 1093–1102.
NIMMO 1997. Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61. 712–719.
Nimmo, J. R. 2004. Porosity and pore size distribution. V. 3. In.: Encyclopedia of soils in the environment (ed.: Hillel, D.) 295–303. London. Elsevier.
Nimmo, J. R., Herkelrath, W. N. & Laguna Luna, A. M. 2007. Physically based estimation of soil water retention from textural data: general framework, new models, and streamlined existing models. Vadose Zone J. 6. 766–773.
Norton L. D. , Mamedov A. I., Huang C. & Levy G. J. 2006. Soil aggregate stability as affected by long-term tillage and clay mineralogy. Adv. Geoecol. 38. 422–429.
O'carroll, D. M., Bradford, S. A. & Abriola, L. M. 2004. Infiltration of PCE in a system containing spatial wettability variations. J. Contam. Hydrol. 73. 39–63.
Oostrom, M., Dane, J. H. & Wietsma, T. W. 2005. Removal of carbon tetrachloride from a layered porous medium by mean of soil vapor extraction enhanced by desiccation and water table reduction. Vadose Zone J. 4. 1170–1182.
Oostrom, M. & Lenhard, R. J. 2003. Carbon tetrachloride flow behavior in unsaturated hanford calcic material: an investigation of residual nonaqueous phase liquids. Vadose Zone J. 2. 25–33.
Pachepsky, Y. A., Guber, AK K., Van Genuchten, M. T., Nicholson, T. J., Cady, R. E., Šimůnek, J. & Schaap, M. G., 2006b. Model abstraction techniques for soil water flow and transport. NUREG/CR-688.
Pachepsky, Y., Rajkai, K. & Tóth, B. 2015. Pedotransfer in soil physics: trends and outlook. A review. Agrokémia és Talajtan. 64. (2) 339–360.
Pachepsky, Y. A. & Rawls, W. J. (eds.) 2004. Development of Pedotransfer Functions in Soil Hydrology. Elsevier. Amserdam.
Pachepsky, Y. A., Rawls, W. J. & Lin, H. S., 2006a. Hydropedology and pedotransfer functions. Geoderma. 131. 308–316.
Parker, J. C., Kaytal, A. K., Kaularachi, J. J., Lenhard, R. J., Johnson, T. J., Jayaramann, K., Unlu, K. & Zhu, J. L. 1991. Modelling multiphase organic chemical transport in soils and groundwater. Final report. EPA/600/2-91/042. Environmental protection Agency. Washington, DC.
Parker, J. C., Kool, J. B. & Van Genuchten, M. T. 1985. Determining soil hydraulic properties from one-step outflow experimnets by parameter estimation: II. Experimental studies. Soil Sci. Soc. Am. J. 49. 1354–1359.
Parker, J. C. & Lenhard, R. J. 1987. A model of hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations. Water Resources Research. 23. 2187–2196.
Peng, X. & Horn, R. 2005. Modeling soil shrinkage surve across a wide range of soil types. Soil Sci. Soc. A. J. 69. 584–592.
Peng, X. & Horn, R. 2007. Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. Soil Sci. 58. 98–107.
Poulovassilis, A. 1962. Hysteresis of pore water, an application of the concept of independent domains. Soil Sci. 93. 405–412.
Powers, S. E., Abriola, L. M. & Weber Jr., W. J. 1992. An experiment investigation of NAPL dissolution in saturated subsurface systems: steady state mass transfer rates. Water Resour. Res. 28. 2691–2705.
Priesack, E. & Durner, W. 2006. Closed–form expression for the multi–modal unsaturated conductivity function. Vadose Zone J. 5. 121–124.
Rajkai K. 1988. A talaj víztartó képessége és különböző talajtulajdonságok összefüggésének vizsgálata. Agrokémia és Talajtan. 36–37. 15–30.
Rajkai K. 1993. A talajnedvesség energiaállapotának meghatározása. In: Talaj- és agrokémiai vizsgálati módszerkönyv. 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata (Szerk.: Buzás, I.). INDA 4231 Kiadó. Budapest. 143–161.
Rajkai K. 2004. A víz mennyisége, eloszlása és áramlása a talajban. MTA Talajtani és Agrokémiai Kutatóintézet. Budapest.
Rajkai, K., Tóth, B., Barna, GY., Hernádi, H., Kocsis, M. & Makó, A. 2015. Particle-size and organic matter effects on structure and water retention of soils. Biologia. 70. (11), 1456–1461.
Rajkai K. , Várallyay GY., Pacsepszkij, J. A. & Cserbakov R. A. 1981. pF-görbék számítása a talaj mechanikai összetétele és térfogattömege alapján. Agrokémia és Talajtan. 30. 409–438.
Rasa, K., Eickhorst, T., Tippkötter, R. & Yli-Halla, M. 2012. Structure and pore system in differently managed clayey surface soil as described by micromorphology and image analysis. Geoderma. 173-174. 10–18.
Rathfelder, K. & Abriola, L. M. 1996. The influence of capillarity in numerical modelling of organic liquid redistribution in two-phase systems. Adv. Water Resour. 21. (2) 159–170.
Rawls, W. J. & Brakensiek, D. L. 1985. Prediction of soil water properties for hydrologic modeling. In: Watershed Management in the 1980s. Proceeding of Symposium of Irrig. Drainage Div., Denver, CO., April 30–May 1, 1985. ASCE. NY. 293–299.
Rawls, W. J., Pachepsky, Y., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. 2003. Effect of soil organic carbon on soil water retention. Geoderma. 116. 61–76.
Reynolds, W. D., Drury, C. F., Tan, C. S., Fox, C. A. & Yang, X. M. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma. 152. 252–263.
Rieu, M. & Sposito, R. 1991. Fractal fragmentation, soil porosity, and water properties: I. Theory. Soil Sci. Soc. Am. J. 55. 1231–1238.
Romano, N. & Nasta, P. 2016. How effective is bimodal soil hydraulic characterization? Functional evaluations for predictions of soil water balance. Eur. J. Soil Sci. 67. 523–535.
Ross, P. J. & Smettem, R. J. 1993. Describing soil hydraulic properties with sums of simple functions. Soil Sci. Soc. Am. J. 57. 26–29.
Ross, P. J., Williams, J. & Bristow, K. L. 1991. Equation for extending waterretention curves to dryness. Soil Sci. Soc. Am. J. 55. 923–927.
Roth, K., Vogel, H-J. & Kasteel, R. 1999. The scale way: A conceptual framework for upscaling soil properties. In Modeling of transport processes (eds.: Feyen, J. & Wiyo, K.) 477–490. Wageningen Press. Wageningen. NL.
Rubin, H., Narkis, N. & Carberry, J. 1998. Soil and Aquifer Pollution. Non-aqueous Phase Liquis – Contamination and Reclamation. Springer-Verlag. Berlin.
Rudiyanto, R., Sakai, M., Van Genuchten, M. T., Alazba, A. A., Setiawan, B. I. & Minasny, B. 2015. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis. Water Resour. Res. 51. WR017703.
Ryżak, M. & Bieganowski, A. 2011. Methodological aspects of determining sl particle- size distrubutionusing laser diffraction method. J. Plant. Nutr. Soil Sci. 174. 62–633.
Saxton, K. E. & Rawls, W. J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70. 1569–1578.
Schaap, M.G. 2004. Accuracy and uncertainty in PTF predictions. In: Development of Pedotransfer Functions in Soil Hydrology (eds.: Pachepsky, Y. & Rawls, W. J.) 33–43. Elsevier. Amsterdam.
Schaap, M. G., Leij, F. J. & Van Genuchten, M. T. 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251. 163–176.
Schaap, M. G. & Van Genuchten, M. T. 2006. A modified Mualem-van Genuchten formulation for improved description ot the hydraulic conductivity near saturation. Vadose Zone J. 5. 27–34.
Schindler, U., Durner, W., Von Unold, G. & Müller, L. 2010. Evaporation method for measuring unsaturated hydraulic properties of soils: extending the measurement range. Soil Sci. Soc. Am. J. 74. 1071–1083.
Shein, E. V., Guber, A. K. & Dembovetsky, A. V. 2004. Key soil water contents. In: Development of Pedotransfer Functions in Soil Hydrology (eds.: Pachepsky, Y. & Rawls, W. J.) 241–252. Amsterdam. Elsevier.
Silva, O. & Grifoll, J. 2007. A soil-water retention function that includes the hyperdry region through the BET adsorption isotherm. Water Resour. Res. 43. W11420.
Šimůnek, J., Van Genuchten, M. T. & Šejna, M. 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variable-saturated media. Ver. 3. Department of Environmental Sciences. University of California Riverside. Riverside. CA.
Six, J., Bossuyit, H., Degryze, S. & Denef, K. 2004. A history of research on the link between (micro) aggregates, soil biota and soil organic matter dynamics. Soil Till. Res. 79. 7–31.
Six, J., Paustian, K., Elliott, E. T. & Combrink, C. 2000. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64. 681–689.
Sleep, B. E. 1995. A method of characteristic model for equation at state compositional simulation of organic compounds in groundwater. J. Contam. Hydrol. 17. (3) 189–212.
Smith, K. A. & Mullins, C. E. 2001. Soil and environmental analysis: Physical methods. Marcel Dekker Inc. New York.
Smucker, A. J. M., Park, E. J., Dorner, J. & Horn, R. 2007. Soil micropore development and contributions to soluble carbon transport within macroaggregates. Vadose Zone J. 6. 282–290.
SSSA 2008. Soil Science Society of America: Glossary of soil science terms. Mad WI.
Stefanovits P. 1981. Talajtan. Mezőgazda Kiadó. Budapest.
Stefanovits P. , Filep, GY. & Füleky, GY. 1999. Talajtan. Mezőgazda Kiadó. Budapest.
Tietje, O. & Tapkenhinrichs, M. 1993. Evaluation of pedo-transfer functions. Soil Sci. Soc. Am. J. 57. 1088–1095.
Tisdall, J. M. & Oades, J. M. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33. 141–163.
Tisdall, J. M., Smith, S. E. & Rengasamy, P. 1997. Aggregation of soil by fungal hyphae. Aust. J. Soil Res. 35. 55–60.
Tomasella, J., Hodnett, M. G. & Rossato, L. 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci. Soc. Am. J. 64. 327–338.
Tóth, B., Makó, A., Rajkai, K., Kele, SZ. G., Hermann, T. & Marth, P. 2006. Use of soil water retention capacity and hydraulic conductivity estimation in the preparation of soil water management maps. Agrokémia és Talajtan. 55. 49–58.
Tuller, M. & Or, D. 2001. Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour. Res. 37. (5) 1257–1276.
Tuller, M. & Or, D. 2005. Water films and scaling of soil characteristic curves at low water contents. Water. Resour. Res. 41. W09403.
Tuller, M., Or, D. & Dudley, L. M. 1999. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35. (7) 1949–1964.
Tyler, S. & Wheatcraft, S. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53. 987–996.
Van Dam, J. C. 2000. Field-scale water flow and solute transport. SWAP model concepts, parameter estimation, and case studies. PhD-thesis. Wageningen University. Wageningen. The Netherlands.
Van Geel, P. J. & Roy, S. D. 2002. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship. J. Contam. Hydrol. 58. 79–110.
Van Genutchen, M. T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44. 892–898.
Van Genuchten, M. T. & Nielsen, D. R. 1985. On describing and predicting the hydaulic properties of unsaturated soils. Annales Geophysicae. 3. (5) 615–628.
Van Olphen, H. 1963. An introduction to clay colloid chemistry. Interscience Publ. New York.
Várallyay GY. 1973. A talaj nedvességpotenciálja és új berendezés annak meghatározására alacsony (atmoszféra alatti) tenzió-tartományban. Agrokémia és Talajtan. 22. 1–22.
VÁRALLYAY. Gy. 1993. A fizikai talajféleség meghatározása. In: Buzás, I. (ed.) Talajés agro-kémiai vizsgálati módszerkönyv. 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata. INDA 4231 Kiadó. Budapest. 45–57.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G. & Van Genuchten, M. T. 2011. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone J. 9. 795–820.
Voronin, A. D. 1980. The structure-energy conception of the hydrophysical properties of soils and its practical applications. Pochvovedeniye. 12. 35–46.
Walczak, R. T., Moreno, F., Sławinski, C., Fernandez, E. & Arrue, J. L. 2006. Modeling of soil water retention curve using soil solid phase parameters. J. Hydrol. 329. 3–4. 527–533.
Watson, K. K. 1965. Non-continuous Porous Media Flow. Rep. 84. Water Research Laboratory, Univ. New South Wales, Manly Vale, NSW. Australia.
Weynants, M. et al. 2013. European Hydropedological Data Inventory (EU-HYDI). EUR – Scientific and Technical Research Series 26053. Publications Office of the European Union. Luxembourg.
Wipfer, E. L. & Van Der Zee, S. E. A. T. M. 2001. A set of constitutive relationships accounting for residual NAPL in the unsaturated zone. J. Contam. Hydrol. 50. 53–77.
Wösten, J. H. M., Lilly, A., Nemes, A. & Le Bas, C. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169–185.
Wösten, J. H. M., Pachepsky, Y. A. & Rawls, W. J. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251. 123–150.
Zhou, D. & Blunt, M. 1997. Effect of spreading coefficitent on the distribution of light non-aqueous phase liquid in the subsurface. J. Contam. Hydrol. 25. (1–2) 1–19.