Cadmium accumulation in soils causes ecological, biological and human health risks. Previous studies have shown that reductions in the shoot height and fresh biomass of ryegrass (Lolium perenne L.) are a sensitive indicator of the cadmium pollution level in soils.
Four soils with different types and properties were included in the experiment. In the first period of the biotest, 2 g cotton-wool pads moistened with distilled water were planted with 2 g of perennial ryegrass seeds and the seedlings were grown for 6 days. On the 7th day the cotton-wool pads containing the seedlings were placed on soils polluted with four levels of cadmium: 0, 1, 2 and 4 mg Cd kg−1 soil, added to the soil in the form of cadmium acetate. After a first nutrient-deficient period, the seedlings took up nutrients and toxic substances intensively from the soil samples. After a 14-day period of soil–plant contact the fresh biomass, dry biomass and Cd concentration of the shoots were measured, in addition to which the shoot height was measured every 2 days.
Cadmium treatment significantly reduced the shoot height and fresh weight of ryegrass in all the tested soils, and the damaging effect was proportional to the applied dose. A reduction of more than 10% in the shoot height and fresh weight were observed even at a Cd pollution level of 1 mg Cd kg−1 soil. At the highest Cd level the decrease in shoot height was more than 40% and the decrease in fresh weight more than 35% in all the soils.
The increasing level of Cd application significantly increased the Cd concentration of the shoots. More Cd was accumulated in ryegrass shoots on soils with low pH and low organic matter content.
The results indicate that the ryegrass biotest method is suitable for the characterization of Cd contamination in different soils.
6/2009. (IV. 14.). KvVM-EüM-FVM együttes rendelet a földtani közeg és a felszín alatti vízszennyezéssel szembeni védelméhez szükséges határértékekről és a szennyezések méréséről. Magyar Közlöny 2009/51. (IV. 14.), pp 14398-14413.
Alloway B.J. (1995): Heavy metals in soils. Blackie Academic and Professional, London. 368.
Babich H. , Stotzky G. (1985): Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. Environ. Res. 36: 111–137.
Barcsák Z. (2004): Biogyepgazdálkodás. Mezőgazda Kiadó, Budapest. 20-22.
Barna SZ. , Füleky GY. (2007): A talajok Cd-, Pb- és Cu-szennyezettségének értékelése gyors növényi bioteszttel. Agrokémia és Talajtan 56. (2) 285–300.
Bidar G. , Garcon G., Pruvot C., Dewaele D., Cazier F., Douay F., Shirali P. (2006): Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Environmental Pollution, 147: 546–553.
Cardoso E. J. B. N. , Alves P. R. L. (2012): Soil Ecotoxicology. In: Ecotoxicology. (Ed: Begum, G), InTech Europe, Rijeka, 27-50.
Filep GY. (1998): Behaviour and fate of Pollutants in Soil. In: Soil Pollution. (Ed: Filep, GY.), Agricultural University of Debrecen, Debrecen, 23-51.
Golda S. , Korzeniowska J. (2016): Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environmental Protection and Natural Resources, 27., No. 1: 8–14.
Göthberg A. , Greger M., Holm K., Bengtsson B.E. (2004): Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. Journal of Environmental Quality 33: 1247–1255.
Gruiz K. , Horváth B., Molnár M. (2001): Környezettoxikológia Vegyi anyagok hatása az ökoszisztémára. Műegyetemi Kiadó, Budapest. 171.
Jones L. H. P , Jarvis S. C. (1981): The fate of heavy metals. In: The chemistry of soil processes (Ed. Greenland, D.J., Hayes, M.H.B.), Wiley, Chichester, 599.
Kabata-Pendias A. (2010): Trace Elements in Soils and Plants, Fourth Edition. CRC Press, Boca Raton. 287-301.
Kádár I. (1995): Környezet és természetvédelmi kutatások: A talaj-növény-állatember tápláléklánc szennyeződése kémiai elemekkel Magyarországon. Budapest: A Környezet- és Területfejlesztési Minisztérium és az MTA Talajtani és Agrokémiai Kutató Intézete kiadványa. 169-290.
Kirkham M. B. (2006): Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137: 19–32.
Lehoczky É. , Németh T., Kiss Zs., Szalai, T. (2002): Cadmium and Lead Uptake by Ryegrass, Lettuce and White Mustard Plants on Different Soils. Agrokémia és Talajtan, 51, (1-2): 201-210.
Lehoczky É. , Szabados I., Marth, P. (1996): Cd content of plants as affected by soil Cd concentration. Commun. Soil Sci. Plant Anal. 27: 1765–1777.
Mengel K. , Kirkby E. A., Kosegarten H., Appel T. (2001): Elements with More Toxic Effects. Principles of Plant Nutrition, 5th Edition. 657–673
Murányi A. , Füleky GY., G. Józefaciuk (1997): Ammónium-felvétel hatása a gyökérkörnyezet savanyodására és az angolperje csíranövény kadmiumfelvételére. Agrokémia és Talajtan, 46: 197–206.
MSZ 21470-88 (1993): Környezetvédelmi talajvizsgálatok. Pseudomonas fluorescens talajtoxicitási teszt.
MSZ 21976-17 (1993): Települési szilárd hulladékok vizsgálata. Csíranövény teszt.
MSZ 21978-30 (1988): Veszélyes hulladékok vizsgálata. Azotobacter agile teszt
Nooman H. J. & Füleky Gy. (1989): Gyors bioteszt a talaj tápelem-szolgáltató képességének meghatározására. Agrokémia és Talajtan, 38: 121–142.
(OECD) Organisation for Economic Co-operation and Development (2003): OECD Guideline for the testing of chemicals. Proposal for updating guideline 208. Terrestrial Plant Test: 208: Seedling Emergence and Seedling Growth Test
Ramos I. , Esteban E., Lucena J. J., Garate A. (2002): Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science, 162: 761– 767.
Rivetta A. , Negrini N., Cocucci M. (1997): Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus satuvus L.) seed germination. Plant Cell Environ. 20: 600–608.
Sappin-Didier V. , Vansuyts G., Mench M., Briat J. F., (2005): Cadmium availability at different soil pH to transgenic tobacco overexpresing ferritin. Plant and Soil, 270: 189–197.
Sauvé S. , Manna S., Turmel M. C., Roy A.G., Courchesne F., (2003): Solid solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environmental Science and Technology, 37: 5191–5196
Simon L. , Vágvölgyi S., Győri Z. (1999): Kadmium-akkumuláció napraforgóban. Agrokémia és Talajtan. 48.(1-2): 99-109.
Szabó L. , Fodor L. (1998): Investigation of mobility and availability of some heavy metal in field conditions. In: Soil Pollution, (Ed.: Filep Gy.) Agricultural University of Debrecen, Debrecen 132-137.
Tudoreanu L. , Phillips C. J. (2004): Modeling cadmium uptake and accumulation in plants. Advances in Agronomy 84: 121–157.
Wuana R. A. , Okiemen F. E. (2011): Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation, International Scholarly Research Network, ISRN Ecology, Volume 2011, Article ID 402647, 20 pages