Modelling the flow and transport of fluids (water and non-aqueous phase liquids or NAPLs) in porous systems or soils requires the accurate and reliable determination of basic input modelling parameters, such as liquid retention (Pc–S) and conductivity (Ksat, Kh). Methods for the determination (measurement and estimation) of water retention and conductivity have improved enormously over the last 60 years (Table 1). Promising results verified the applicability of pedotransfer functions (PTF) and their incorporated versions into software and submodels. However, the development of models was only aimed at improving methods with which these hydrological parameters could be determined for water, while calculations for NAPLs can still only be made indirectly. Several studies (e.g. in the petroleum industry, and research for environmental or hydrological purposes) revealed differences in the relationship between the hydraulic properties and pore system of the porous solid phase. Interactions (swelling-shrinking, desaggregation, etc.) between the phases may be significantly different in water/soil and NAPL/soil systems, affecting the efficiency of modelling. However, relatively few well-documented results have been published on the measurement of these hydraulic properties for NAPL-type fluids using a sufficient number of real, especially undisturbed soils. The establishment of databases of this sort might provide a basis for creating and developing PTF-type estimation methods for predicting NAPL retention and conductivity. Furthermore, it might improve our knowledge on interactions specific to the solid and fluid phases of pore systems, and also on the soil properties influencing the pore size distribution of soils (e.g. soil structure, the size distribution, morphology or stability of aggregates) and their relationship with the hydrophysical properties of the soil.
Acar, Y. B. & Olivieri, I., 1990. Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Transp. Res. Rec., 1219. 144–159.
Acutis, M. & Donatelli, M., 2002. SOILPAR 2.00: Software to estimate soil hydrological parameters and functions. Eur. J. Agron. 8. (3–4) 373–377.
Ahuja, L.R. & Hebson, C., 1992. Root Zone Water Quality Model. GPSR Technical Report No. 2. USDA, ARS, Fort Collins, CO.
Alizadeh, A. H. & Piri, M., 2014. Three-phase flow in porous media: A review of experimental studies on relative permeability. Rev. Geophys. 52. 468–521.
Amer , 2012. Prediction of hydraulic conductivity as related to pore size distribution in unsaturated soils. Soil Sci. 174. (9) 508 –515.
Amyx, J. W., Bass, D. M. & Whitting, R. L., 1960. Petroleum reservoir engineering. Physical properties. McGraw-Hill Book Company. New York.
Anderson, J.L. & Bouma, J., 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Sci. Soc. Am. J. 37. 408–413.
Anderson, D.A. & Brown, K.W., 1981. Organic leachate effects on the permeability of clay liner. In: Proceedings of the seventh annual research symposium on land disposal: Hazardous Waste. EPA-600/9-81-002b. Cincinnati, OH. US.
Anderson, D.C., Brown, K. & Thomas, J.C., 1985. Conductivity of compacted clay soils to water and organic liquids. Water Management & Research. 3. 339–349.
Anderson, M.P., Woessner, W.W. & Hunt, R.J., 2015. Applied Groundwater modeling. 2 nd ed. Elsevier.
Arya, L.M. & Paris, J.F., 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45. 1023–1030.
Arya, L.M., Leij, F.J., Shouse, P.J. & van Genuchten. M.Th., 1999. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Am. J. 63. 1063–1070.
Assouline, S. , 2001. A model for soil relative hydraulic conductivity based on the water retention characteristic curve, {itWater Resour. Res. 37. 265–271.
Assouline, S. , 2005. On the relationship between the pore size distribution index and characteristics of the soil hydraulic functions. Water Resour. Res. 41. W07019.
Assouline, S. , 2006. Modeling the relationship between soil bulk densityand the hydraulic conductivity function, {itVadose Z. J. 5. 697–705.
Assouline, S. & Tessier, D., 1988. A conceptual model of soil water retention. Water Resour. Res. 34. (2) 223–231.
Assouline S. & Tarakovsky D. M., 2001. Unsaturated hydraulic conductivity function based on a soil fragmentation process. Water Resour. Res. 37. (5) 1309–1312.
Bak, B.D. , 2015. Inváziós perkoláció gráfokon: Porozimetria modellezése és szimulálása. TDK Dolgozat. Budapest.
Bakke, S. & Oren, P.-E., 1997. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks SPEJ. 2. 136–149.
Bashtani, F., Maini, B. & Kantzas, A., 2015. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach. Adv. Water Res. 94. 174–184.
Bear, J. , 1979. Hydraulics of groundwater. McGraw-Hill Co. New York.
Beven, K.J. & Germann, P.F., 1982. Macropores and water flow in soils. Wat. Resour. Res. 18. (5) 1311–1325.
Blunt., M.J. , 2001. Flow in porous media pore-network models and multiphase flow. Current Opinion in Colloid & Interface Science. 6. 197–207.
Boulding, R.S. , 1995. Practical handbook of soil vadose zone and groundwater contamination. Boca Raton, Fla.
Bouma, J.A., Boersma, A.J. & Schoonderbeek, D., 1977. The function of different types of macropores during saturated flow through four swelling soil horizons. Soil. Sci. Soc. Am. J. 41. 945–950.
Brakensiek, D.L., Rawls, W.J., Stephenson, G.R., 1984. Modifying SCS hydrologic soil groups and curve numbers for rangeland soils. ASAE Paper No. PNR-84-203, St. Joseph, MI.
Braun, C., Helming, R. & Manthey, S., 2005. Macro-scale effective conductivity relationship for two-phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation relationship. J. Contam. Hydrol. 76. 1–2. 47–80.
Brunauer, S., Emmett, P.H. & Teller, E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60. 309–319.
Brutsaert, W. , 1966. Probability laws for pore size distributions. Soil Sci., 101. 85–92.
Budhu, M., Giese, R.F., Campbell, G.Jr. & Baumgrass, L., 1991. The permeability of soils with organic fluids. Can. Geotech. J. 28. 140–147.
Burdine, N.T. , 1953. Relative permeability calculations from pore size distribution data. Petroleum Transactions, AIME. 198. 71–78.
Campbell, G.S. , 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117. 311–314.
Campbell, G.S. , 1985. Soil physics with basic. Development in soil science. 14. Elsevier. Amsterdam.
Campbell, G.S. & Campbell, M.D., 1982. Irrigation scheduling using soil moisture measurements: theory and practice. Adv. Irrig. 1. 25–42.
Carman, P.C. , 1937. Fluid flow through granular beds. Transactions, Institution of Chemical Engineers. London. 15. 150–166.
Chapuis R.P. & Aubertin M., 2003. On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil. Can. Geotech J. 40. (3) 616–628.
Chapuis R.P. & Légaré P.P., 1992. A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance. ASTM STP 1147. 177–186.
Chatzis, I. & Dullien, F.A.L., 1985. The modelling of mercury porosimetry and relative permeability of mercury in sandstones using percolation theory. Int. Chem. Eng. 25. 47–65.
Chen, C. & Wagenet, R.J., 1991. Simulation of water and chemicals in macropore soils, I. Representation of the equivalent macropore influence and its effect on soil-water flow. {itJ. Hydrol. 130. 105–126.
Chen, S., Low, P.F., Cushman, J.H. & Roth, C.B., 1987. Organic compound effects on swelling and flocculation of Upton montmorillonite. Soil Sci. Soc. Am J. 51. 1444–1450.
Childs, E.C. & Collis-George, N., 1950. The permeability of porous media. Proc. R. Soc. Lond. 201. 392–405.
Corey, A.T. , 1986. Air permeability. In: Methods of Soil Analysis. (ed.: Klute, A.) 2nd ed. Agyronomy monograph 9. ASA and SSSA. Madison, WI.1121–1136.
Cosby, B.J., Hornberger, G.M., Clapp, R.B. & Ginn, T.R., 1984. A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20. 6. 682–690.
Creswell, H.P. et al., 2000. The SH-Pro V1.03 Software for Predicting and Analysing Soil Hydraulic Properties. CSIRO Land and Water. Canberra, Australia.
Csókás, J. 1995: Vízadó rétegek jellemző hozamának és a víz minőségének meghatározása geofizikai fúrólyukszelvények alapján. Magyar Geofizika. 35. 176–203
Dicarlo, D.A., Sahni, A. & Blunt, M.J., 2000. Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks. SPE J. 5. (1) 82–91.
Dragun, J. , 1998. The soil chemistry of hazardous materials. Amherst scientific publishers. Amherst. Massachusetts.
Dullien, F.A.L. , 1979. Porous media, Fluid Transport and Pore Structure. Academic Press Inc. New York. ISBN-13:978-0122236518.
Dunai, A. & Makó, A., 2011. Talajok folyadékvezető képességének összehasonlító vizsgálata vizes és nem vizes rendszerekben. Talajvédelem különszám. In: Farsang, A. & Ladányi, Zs. (szerk.): Talajaink a változó természeti és társadalmi hatások között. Talajtani vándorgyűlés Szeged, 2010. szeptember 3–4. 331–337.
Dunai, A., Makó, A. & Hernádi, H., 2007. A talajok légáteresztő képességének és szerves folyadék vezető képességének összehasonlító vizsgálata. Erdei Ferenc IV. Tudományos Konferencia. Kecskemét. 2007. augusztus 27–28. 971–974.
Durner, W. , 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30. 211–223.
Fatt, I. , 1965. The network model of porous media I. Capillary pressure characteristics. Trans AIME. 207. 141–159.
Fattah, A. , 2004. Equations for water/oil relative permeability in Saudi Arabian sandstone reservoirs. Saudi Aramco J. Technol. 4. (1) 48–58.
Felsenthal, M. , 1959. Correlation of Kg/Ko data with sandstone core characteristics. Trans AIME. 216. 258–261.
Fernandez, F. & Quigley, R.M., 1985. Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can. Geotech. J. 22. 205–214.
Fisher, U. & Celia, M.A., 1999. Prediction of relative and absolute permeabilities for gas and water from water retention curves using a pore-scale network model. Water Resour. Res. 35. 1089–1100.
Fodor, N., Blaskó, L., Éri, L. & Rajkai, K., 2009. Hidraulikus vezetőképesség mérési és becslési eredmények összehasonlítása homoktalajra. Agrokémia és Talajtan. 58. 369–380.
Fodor, N. & Rajkai, K., 2005. Számítógépes program a talajok fizikai és vízgazdálkodási jellemzőinek egyéb talajjellemzőkből történő számítására (TALAJTANonc 1.0). Agrokem. Talajtan. 54. 25–40.
Fulcher, R. A., Ertekin, T., & Stahl, C.D., 1985. Effect of capillary number and its constituents on two-phase relative permeability measurements. J. Petrol. Technol. Feb. 249.
Gálfi J. & Liebe P., 1981. Az elektromos fajlagos ellenállás és a szivárgási tényező kapcsolata törmelékes vízadó kőzetekben. Vízügyi Közlemények. 63. 437–448.
Gardner, W.R. , 1958. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from water table. Soil. Sci. 85. (3) 218–232.
Gerhard, J.I. & Kueper, B.H., 2003. Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media. Water Resour. Res. 39.
Gerke, H.H. & van Genuchten, M. Th., 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29. 305–319.
Ghanbarian-Alavijeh, B., Hunt, A.G. Ewing, R.P. & Skinner, T.E., 2014. Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophys. Res. Lett. 41. (11) 16.3884–3890.
Gostick et al., 2016. Open PNM: A pore network modeling package. Comp. Sci. Eng. 18. (4) 60–74.
Graber, E.R. & Mingelgrin, U., 1994. Clay swelling and regular solution theory. Environ. Sci. Technol. 28. 2360–2365.
Gregg, S.J. & Sing, K.W.S., 1967. Adsorption Surface Area and Porosity. Academic Press. London.
Gregson, D., Hector, D.J. & McGowan, M., 1987. A one-parameter model for the soil water characteristic. J. Soil. Sci. 38. 483.
Guarnachia, J., Pinder, G. & Fishman, M., 1997. NAPL simulator documentation. National Risk Management Research Laboratory. Ada, OK 74820. EPA/600/R-97/102.
Hardisty, P.E., Wheater, H.S., Birks, D. & Dottridge. J., 2003. Characterization of NAPL in fractures rock. Quat. J. Eng. Geol. Hydrol. 36. (4) 343–354.
Hazen, A. , 1982. Some physical properties of sands and gravels. Massachusetts State Board of Health. Annual report. 539–556.
Held, R.J. & Celia, M.A., 2001. Modeling support of functional relationships between capillary pressure, interfacial areas and common lines. Adv. Water Resour. 24. 325–343.
Hernádi, H., Barna Gy. & Makó, A., 2017. Folyadék-visszatartás, folyadékvezetés és porozitás összefüggései vízzel és/vagy szerves folyadékkal telített talajokban I. Folyadék-visszatartó képesség — Szemle. Agrokémia és Talajtan. 66. (1) 251–282.
Hettiratchi, J.P.A., Hrudey, S.E., Smith, D.W. & Sego, D.C.C., 1988. A procedure for evaluating municiple solid waste leachate components capable of causing volume shrinkage in compacted clay soils Environ. Technol. Letters. 9. 23–34.
Hillel, D. , 1998. Environmental Soil Physics. Academic Press. San Diego, CA. USA.
Hildebrand, J.H., Prausnitz, J.M. & Scott, L.R., 1970. Regular and Related Solutions. Van Nostrand Reinhold, New York.
Hirasaki, G. , 1975. Sensitivity Coefficients for History Matching Oil Displacement Processes. Soc. Petrol. Eng. J. 15. (1) 32–59.
Honarpour, M., Koederitz, L., Harvey, A.A., 1986. Relative Permeability of Petroleum Reservoirs. CRC Press Inc. Florida USA.
Hui M.H. & Blunt, M.J., 2000. Pore-scale modeling of three-phase flow and the effects of wettability. SPE 59309. Proceedings of the SPE_DOE Improved Oil Recovery Symposium. Tulsa, OK. April, 2000.
Hutson, J.L. & Wagenet, R.J., 1995. A multiregion model describing water flow and solute transport in heterogeneous soils. Soil Sci. Soc. Am. J. 59. 743–751.
Iden, S. C. & Durner, W., 2014. Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters, Water Resour. Res., 50, 7530–7534, doi:10.1002/2014WR015937.
Irmay, S. 1954. On the hydraulic conductivity of unsaturated soils. Trans. Am. Geophys. Union. 35.
Izdebska-Mucha, D. & Trzciński, J., 2008. Effects of petroleum pollution on clay soil microstructure. Geologija. Vilnius. 50. Supplement. 68–74.
Iversen, B.V., Moldrup, P., Schjonning, P. & Loll, P., 2001a. Air and water permeability in differently textured soils at two measurement scales. Soil Science. 166. 643–659.
Jaines, B. & Tyler, E.J. 1984. Using soil physical properties to estimate hydraulic conductivity. Soil Sci. 138. (4) 298–305.
Jarsjo, J., Destouni, G. & Yaron, B., 1994. Retention and volatilization of kerosene laboratory experiments on glacial and post glacial soils. J. Contam. Hydrol. 17. 167–185.
Jarso, J., Destouni, G. & Yaron, B. 1997. On the relation between viscosity and hydraulic conductivity values for volatile organic liquid mixtures in soils. J. Contam. Hydrol. 25. 113–127.
Jarvis, N.J. , 1994. The MACRO Model (Version 3.1). Technical Description and Sample Simulations. Reports and Dissertations 19. Department of Soil Science, Swedish University of Agricultural Science. Uppsala, Sweden.
Jarvis N. J. , 2007. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 58. 523–546.
Jarvis, N. J., Zavattaro, L., Rajkai, K., Reynolds, W. D., Olsen, P.-A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B. & Jacques, D., 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma. 108. (1–2) 1–17.
Joekar-Niassar, V., Hassanizadeh, S.M. & Dahle, H.K., 2010. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: Dynamic pore-network modelling, J. Fluid. Mech. 655. 38–71.
Joonaki, A. & Ghanaatian, S. 2013. Prediction of Relative Permeability for Multiphase Flow in Fractured Oil Reservoirs by using a soft computing approach. J. Comp. Appl. 73. 45–55.
Juhász J. 2002. Hidrogeológia. Akadémiai Kiadó. Budapest.
Kinsky, J., Frydman, S. & Zaslavsky, D., 1971. The effect of different dielectric liquids on the engineering properties of clay. Proceedings of fourth Asian regional conference on SFME. 1. 369–372.
Klimes-Szmik A. , 1962. A talaj pórusterének beosztása a víz mozgása alapján. Agrokémia és Talajtan. 1. 41 –54.
Kessler, A. & Rubin, H., 1987. Relationships between water infiltration and oil spill migration in sandy soils. J. Hydrol. 91. 187–204.
Koekkoek, E. J. W. & Boltink, H., 1999. Neural Network models to predict soil water retention. Am. J. Soil. Sci. 350. 489–495.
Kool, J. B. & Parker, J. C., 1987. Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23. 105–114.
Kosugi, K. , 1994. Three-parameter lognormal distribution model for soil water retention. Water. Resour. Res. 30. (4) 891–901.
Kosugi, K. , 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore size distribution. Soil. Sci. Am. J. 63. 270–277.
Kosugi, K., Hopmans, J. W. & Dane, J. H., 2002. Parametric models. In: Methods of Soil Analysis (Eds.: Dane, J. H. & Topp, G. C.) 739–757. Part 4. SSSA Book Ser. 5. SSSA. Madison,Wis.
Kovács, Gy. , 1972. A szivárgás hidraulikája. Akadémiai Kiadó. Budapest.
Kozeny, J. , 1927. Über kapillare Leitung des Wassers im Boden. Wiener Akademie Wissenschaft. 136. 271.
Kueper, B. H. & Frind, E. O., 1991. Two-phase flow in heterogeneous porous media, 1, Model development. Water Resour. Res. 27. 1049–1057.
Lal, R. & Shukla, M. K., 2004. Principles of Soil Physics. Marcel Dekker. New York.
Laliberte, G. E. , 1969. A mathematical function for describing capillary pressuredesaturation data. Bull. Int. Assoc. Sci. Hydrol. 142. 131–149.
Lebeau, M. & Konrad, J-M., 2010. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 46. W12554.
Lenhard, R.J. & Parker, J.C., 1987. A model for hysteretic constitutive relations governing multiphase flow, 2. Permeability-saturation relations. Water Resour. Res. 23. (12) 2197–2206.
Leverett, M.C. , 1941. Capillary behavior in porous solids. Trans. AIME. 142. 152–169.
Leverett, M.C. & Lewis, W.B., 1941. Steady flow of gas-oil-water mixtures trough unconsolidated sands. Trans. AIME. 142. 107–116.
Lian, L.T. & Sagar, B.S.D. 2006. Modeling, description, and characterization of fractal pore via mathematical morphology. Discrete Dyn. Nat. Soc. Article ID 89280.
Loll, P., Moldrup, P., Schjønning, P. & Riley, H., 1999. Predicting saturated hydraulic conductivity from air permeability: application in stochastic water infiltration modeling. Water Resour. Res. 35 8. 2387–2400.
Lowel, S. & Joen, E.S., 1984. Powder surface area and porosity. 3 rd ed. Chapman & Hall. London.
Luckner, L.M., van Genuchten, M. Th. & Nielsen, D.R., 1989. A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25. 2187–2193.
Makó, A. , 1995. Szerves folyadékokkal telített talajok hidraulikus vezetőképessége. II. A becslés lehetőségei. Agrokémia és Talajtan. 44. (1–2) 203–220.
Makó, A. , 1997. A talaj szilárd fázisa és a szerves folyadékok kölcsönhatásai. Kandidátusi értekezés. Keszthely.
Makó, A. & Elek, B., 2006. Measuring the fluid conductivities of soil in multiphase system. Cereal Research Communication. 34. 239–242.
Makó, A., Elek, B., Dunai, A. & Hernádi H., 2009. Comparison of nonaqueous phase liquids conductivity and air permeability of different soils. Commun. Soil.Sci. Plant Anal. 40. (1) 787–799.
Makó A. & Hernádi H., 2012. Kőolajszármazékok a Talajban: Talajfizikai Kutatások. Pannon Egyetem. Veszprém. Magyarország.
Mehmani, Y., Sun, T., Balhoff, M., Eichhubl, P. & Bryant, S., 2012. Multiblock pore-scale modeling and upscaling of reactive transport: application to carbon sequestration. Trans. Porous Media. 95. (2) 305–326.
Mehmani, A. & Prodanović, M., 2014. The effect of microporosity on transport properties in porous media. Adv. Water Resour. 63. 104–119.
Mesri, G. & Olson, R.E., 1971. Consolidation characteristics of montmorillonite. Geotechnique. 21. 341–352.
Miller, E.E. & Miller, R.D., 1956. Physical theory of capillary flow phenomena. J. Appl. Phys. 27. 324–332.
Minasny, B., Hopmans, J.W., Harter, T., Eching, S.O., Tuli, A. & Denton, M.A., 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci. Soc. Am. J. 68. 417–429.
Mitchell, J.K. & Madsen, F.T., 1987. Chemical effects on clay hydraulic conductivity. In: Proc. Speciality Conference on Geotechnical practice for waste disposal. 87–116.
Mohanty, B.P., Skaggs & van Genuchten, M.Th., 1998. Impact of saturated hydraulic conductivity on the prediction of tile flow. Soil Sci. Soc. Am. J. 62. 1522–1529.
Mualem, Y. , 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12. 513–521.
Mualem, Y. & Dagan. G., 1975. A dependent domain model of capillary hysteresis. Water Resour. Res. 11. 3. 452–460.
Murray, R.S. & Quirk, J.P., 1982. The physical swelling of clays in solvents. Soil Sci. Soc. Am. J. 46. (4) 865–868.
Nagarajarao, Y. , 1994. Pore size distribution measurements in swell-shrink soils. J. Plant. Nutr. Soil. Sci. 157. (2) 81–85.
Nasta, P., Romano, N., Assouline, S., Vrugt, J. & Hopmans, J.W., 2013. Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions. Water Resour. Res. 49. 4219–4229.
Nimmo, J.R. , 1997. Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61. 712–719.
Nimmo, J. R., Herkelrath, W. N. & Laguna Luna, A. M., 2007. Physically based estimation of soil water retention from textural data: general framework, new models, and streamlined existing models. Vadose Z. J. 6. 766–773.
Olejnik, S., Posner, A.M. & Quirk, J.P., 1974. Swelling of montmorillonite in polar organic liquids. Clays & Clay Minerals. 22. 361–365.
Oostrom, M. & Lenhard, R. J., 2003. Carbon tetrachloride flow behavior in unsaturated hanford calcic material: an investigation of residual nonaqueous phase liquids. Vadose Zone J. 2. 25–33.
Oostrom, M., Dane, J.H. & Wietsma, T. W., 2005. Removal of carbon tetrachloride from a layered porous medium by mean of soil vapor extraction enhanced by desiccation and water table reduction. Vadose Z. J. 4. 1170–1182.
Othmer, H., Diekkrüger, B. & Kutilek, M., 1991. Bimodal porosity and unsaturated hydraulic conductivity. Soil Sci. 152. 139–149.
Øren, P.-E., Bakke, S. & Arntzen, O.J., 1998. Extending predictive capabilities to network models SPE J. Richardson. 3. 324–336.
Pachepsky, Y.A., Rawls, W.J. & Lin, H.S., 2006a. Hydropedology and pedotransfer functions. Geoderma. 131. 308–316.
Pachepsky, Y. A., Guber, Ak. K., van Genuchten, M. Th., Nicholson, T.J., Cady, R.E., Šimůnek, J. & Schaap, M.G., 2006b. Model abstraction techniques for soil water flow and transport. NUREG/CR-688.
Pham, H. Q., Fredlund, D.G. & Barbour, S.L., 2005. A study of hysteresis models for soil-water characteristic curves. Canadian Geotechnical J. 42. 1548–1568.
Parker, J.C. & Lenhard, R.J., 1987. A model of hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations. Water Resour. Res. 23. 2187–2196.
Paterson L. , Painter S., Zhang X., Pinczewski W.V., 1998. Simulating residual saturation and relative permeability in heterogeneous formations. SPE J. 3. 211–218.
Pennell, K.D., Pope, G.A. & Abriola, L.M., 1996. Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ. Sci. Technol. 30. 1328–1335.
Peters, A. , 2013. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res. 49. 6765–6780.
Peters, A. & Durner, W., 2008. Simplified evaporation method for determining soil hydrulic properties. J. Hydrol. 356. 147–162.
Philip, J.R. & de Vries, D.A., 1957. Moisture movement in porous materials under temperature gradients. Trans. Amer. Geophys. Union. 38. 222–232.
Piri, M. & Blunt, M.J., 2005. Three-dimensional mixed-wet random pore-scale network modelling of two- and three-phase flow in porous media. II. Results. Phys. Rev. E, 71. (2) 026302.
Pope, G.A., Sepehrnoori, K., Sharma, M.M., McKinney, D.C., Speitel, G.E. & Jackson, R. E., 1999. Three-dimensional NAPL fate and transport model. U. S. Environmental Protection Agency.
Purcell, W.R. , 1949. Capillary pressures –Their measurements using Mercury and calculation of permeability. Trans. AIME. 186. 39–48.
Rajkai K. , 1984. A talaj kapilláris vezetőképességének számítása a pF-görbe alapján, Agrokémia és Talajtan. 33. 50–62.
Rajkai K. , 2004. A víz mennyisége, eloszlása és áramlása a talajban. MTA Talajtani és Agrokémiai Kutatóintézet. Budapest.
Raoof, A. & Hassanizadeh, S.M., 2009. A new method for generating porenetwork models of porous media. Transp. Porous Media. 81. (3) 391–407.
Raoof, A., nick, H., Hassanizadeh, S. & Spiers, C. 2013. PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 61. 160–174.
Rathfelder, K. & Abriola, L.M., 1996. The influence of capillarity in numerical modelling of organic liquid redistribution in two-phase systems. Adv. Water Resour. 21. (2) 159–170.
Rawls, W. J. & Brakensiek, D. L., 1985. Prediction of soil water properties for hydrologic modeling. In: Watershed Management in the 1980s. Proceeding of Symposium of Irrig. Drainage Div., Denver, CO., April 30–May 1, 1985. ASCE. NY. 293–299.
Reeves, P.C. & Celia, M.A., 1996. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour Res. 32. 2345–2358.
Roghanian, R. Rasaei, M. R. & Haghighi, M., 2010, Key point prediction of water-oil relative permeability curves using linear regression technique. Petrol. Sci. Technol. 30. (5) 518–533.
Romano, N. & Nasta, P., 2016. How effective is bimodal soil hydraulic characterization? Functional evaluations for predictions of soil water balance. Eur. J. Soil Sci. 67. 523–535.
Rubin, H., Narkis, N. & Carberry, J., 1998. Soil and Aquifer Pollution. Nonaqueous Phase Liquis –Contamination and Reclamation. Springer-Verlag. Berlin.
Rudiyanto, R., Sakai, M., Van Genuchten, M.Th., Alazba, A.A., Setiawan, B.I. & Minasny, B., 2015. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis. Water Resour. Res. 51. WR017703.
Schaap, M.G., Leij, F.J. & van Genuchten, M.Th., 1999. A bootstrap neuralnetwork approach to predict soil hydraulic parameters. In: Proc. of the International Workshop on Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media (Eds.: van Genuchten, M.Th., Leij, F.J. & Wu, L.). University of California. Riverside, CA. 1237–1250.
Schaap, M.G. & van Genuchten, M.Th., 2006. A modified Mualem-van Genuchten formulation for improved description ot the hydraulic conductivity near saturation. Vadose Z. J. 5. 27–34.
Schaap, M.G., Leij, F., J. & van Genuchten, M.Th., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251. 163 –176.
Shahverdi, H., Sohrabi, M., fatemi, S.M. & jamiolahmady, M., 2011. Three-phase relative permeability and hysteresis effect during WAG process in mixed and low IFT systems. J. Pet. Sci. Eng. 78. 732–739.
Šimůnek, J., Jarvis, N.J., van Genuchten, M. Th. & Gärdenäs, A., 2003. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272. 14–35.
Šimůnek, J.,Sejna, M. & van Genuchten, M.Th., 1998. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC-TPS-70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado.
Šimůnek, J.,Sejna, M. & van Genuchten, M.Th., 1999. The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC-TPS-53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado.
SSSA, 2008. Soil Science Society of America: Glossary of soil science terms. Mad WI.
Steiakakis, E., Gamvroudis, C. & Alevizos, G., 2012. Kozeny-Carman equation and hydraulic conductivity of compacted clayey soils. Geomaterials. 12. 37–41.
Tamari, S., Wösten, J.H.M. & Ruiz-Sárez, J.C., 1996. Testing an artificial neural network for predicitng soil hydraulic conductivity. Soil Sci. Soc. Am. J. 60. 1732–1741.
Tsakiroglou, C.D. & Fleury, M., 1999. Pore network analysis of resistivity index for water-wet porous media. Transport in Porous Media. 35. 89–128.
Tuli, A. & Hopmans, J.W., 2004. Effect of degree of fluid saturation on transport coefficients in disturbed soils. Eur. J. Soil Sci. 55. 147–164.
Tuller, M. & Or, D., 2001. Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour. Res. 37. (5) 1257–1276.
Tuller, M. & Or, D. 2005. Water films and scaling of soil characteristic curves at low water contents. Water. Resour. Res. 41. W09403.
Tuller, M., Or, D. & Dudley, L.M., 1999. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35. (7) 1949–1964.
Tyler, S. & Wheatcraft, S., 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53. 987–996.
Valvatne, P.H. & Blunt, M.J., 2004. Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour Res. 40. W07406.
van Genuchten, M. Th. , 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44. 892–898.
van Genuchten, M.Th. & Nielsen, D.R., 1985. On describing and predicting the hydaulic properties of unsaturated soils. Annales Geophysicae. 3. (5) 615–628.
van Olphen, H. , 1963. An introduction to clay colloid chemistry. Interscience Publ. New York.
Veeecken, H. , 1995. Estimating the unsaturated hyraulic conductivity from theoretical models using simple soil properties. Geoderma. 65. 81–92.
Vereecken, H., Maes, J. & Feyen, J. 1990. Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci. 149. 1–12.
Vereecken, H., Kasteel, Vanderborght, J. & Harter, T., 2007. Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review. Vadose Zone J. 6. 1–28.
Vereecken et al., 2016. Modeling soil process: Review, key challenges, and new perspectives. Vadose Zone J. 15. 1–57.
Weaver, J.W., Charbeneau, R.J., Tauxe, J.D., Lien, B.K. & Provost, J.B., 1994. The hydrocarbon spill screening model (HSSM). 1. USEPA. EPA/600/R–94/039a. Ada. Okl.
Vogel, H.J., & Roth, K., 2001. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour, 24. (3) 233–242.
Walsh, D. , 2008. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. Journal of Applied Geophysics. 66. (3–4) 140–150.
Werth., C.H., Zhang, C., Brusseau, M.L., Oostrom, M. & Baumann, T., 2010. A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Contam. Hydrol. 113. 1–24.
White, M.D. & Oostrom, M., 2006. STOMP Subsurface transport over multiple phases. Version 4. PNNL 15782.
Wösten, J.H.M., Lilly, A., Nemes, A. & Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169–185.
Wösten, J.H.M., Pachepsky, Y.A. & Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251. 123–150.
Xiong, G., Baychev, T.G. & Jivkov, A.P., 2016. Review of pore network modelling of porous media: Experimetnal characterisations, network constructions and applications to reactive transport. J. Contam. Hydr. 192. 101–107.
Zhang, Z.F. , 2011. Soil water retention and relative permeability for conditions from oven-dry to full saturation. Vadose Z. J. 10. 1299–1308.