View More View Less
  • 1 Pannon Egyetem, Keszthely
  • 2 Magyar Tudományos Akadémia, Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

Modelling the flow and transport of fluids (water and non-aqueous phase liquids or NAPLs) in porous systems or soils requires the accurate and reliable determination of basic input modelling parameters, such as liquid retention (Pc–S) and conductivity (Ksat, Kh). Methods for the determination (measurement and estimation) of water retention and conductivity have improved enormously over the last 60 years (Table 1). Promising results verified the applicability of pedotransfer functions (PTF) and their incorporated versions into software and submodels. However, the development of models was only aimed at improving methods with which these hydrological parameters could be determined for water, while calculations for NAPLs can still only be made indirectly. Several studies (e.g. in the petroleum industry, and research for environmental or hydrological purposes) revealed differences in the relationship between the hydraulic properties and pore system of the porous solid phase. Interactions (swelling-shrinking, desaggregation, etc.) between the phases may be significantly different in water/soil and NAPL/soil systems, affecting the efficiency of modelling. However, relatively few well-documented results have been published on the measurement of these hydraulic properties for NAPL-type fluids using a sufficient number of real, especially undisturbed soils. The establishment of databases of this sort might provide a basis for creating and developing PTF-type estimation methods for predicting NAPL retention and conductivity. Furthermore, it might improve our knowledge on interactions specific to the solid and fluid phases of pore systems, and also on the soil properties influencing the pore size distribution of soils (e.g. soil structure, the size distribution, morphology or stability of aggregates) and their relationship with the hydrophysical properties of the soil.

  • Acar, Y. B. & Olivieri, I., 1990. Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Transp. Res. Rec., 1219. 144159.

    • Search Google Scholar
    • Export Citation
  • Acutis, M. & Donatelli, M., 2002. SOILPAR 2.00: Software to estimate soil hydrological parameters and functions. Eur. J. Agron. 8. (3–4) 373377.

    • Search Google Scholar
    • Export Citation
  • Ahuja, L.R. & Hebson, C., 1992. Root Zone Water Quality Model. GPSR Technical Report No. 2. USDA, ARS, Fort Collins, CO.

  • Alizadeh, A. H. & Piri, M., 2014. Three-phase flow in porous media: A review of experimental studies on relative permeability. Rev. Geophys. 52. 468521.

    • Search Google Scholar
    • Export Citation
  • Amer , 2012. Prediction of hydraulic conductivity as related to pore size distribution in unsaturated soils. Soil Sci. 174. (9) 508515.

    • Search Google Scholar
    • Export Citation
  • Amyx, J. W., Bass, D. M. & Whitting, R. L., 1960. Petroleum reservoir engineering. Physical properties. McGraw-Hill Book Company. New York.

    • Search Google Scholar
    • Export Citation
  • Anderson, J.L. & Bouma, J., 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Sci. Soc. Am. J. 37. 408413.

    • Search Google Scholar
    • Export Citation
  • Anderson, D.A. & Brown, K.W., 1981. Organic leachate effects on the permeability of clay liner. In: Proceedings of the seventh annual research symposium on land disposal: Hazardous Waste. EPA-600/9-81-002b. Cincinnati, OH. US.

    • Search Google Scholar
    • Export Citation
  • Anderson, D.C., Brown, K. & Thomas, J.C., 1985. Conductivity of compacted clay soils to water and organic liquids. Water Management & Research. 3. 339349.

    • Search Google Scholar
    • Export Citation
  • Anderson, M.P., Woessner, W.W. & Hunt, R.J., 2015. Applied Groundwater modeling. 2 nd ed. Elsevier.

  • Arya, L.M. & Paris, J.F., 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45. 10231030.

    • Search Google Scholar
    • Export Citation
  • Arya, L.M., Leij, F.J., Shouse, P.J. & van Genuchten. M.Th., 1999. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Am. J. 63. 10631070.

    • Search Google Scholar
    • Export Citation
  • Assouline, S., 2001. A model for soil relative hydraulic conductivity based on the water retention characteristic curve, {itWater Resour. Res. 37. 265271.

    • Search Google Scholar
    • Export Citation
  • Assouline, S., 2005. On the relationship between the pore size distribution index and characteristics of the soil hydraulic functions. Water Resour. Res. 41. W07019.

    • Search Google Scholar
    • Export Citation
  • Assouline, S., 2006. Modeling the relationship between soil bulk densityand the hydraulic conductivity function, {itVadose Z. J. 5. 697705.

    • Search Google Scholar
    • Export Citation
  • Assouline, S. & Tessier, D., 1988. A conceptual model of soil water retention. Water Resour. Res. 34. (2) 223231.

  • Assouline S. & Tarakovsky D. M., 2001. Unsaturated hydraulic conductivity function based on a soil fragmentation process. Water Resour. Res. 37. (5) 13091312.

    • Search Google Scholar
    • Export Citation
  • Bak, B.D., 2015. Inváziós perkoláció gráfokon: Porozimetria modellezése és szimulálása. TDK Dolgozat. Budapest.

  • Bakke, S. & Oren, P.-E., 1997. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks SPEJ. 2. 136149.

  • Bashtani, F., Maini, B. & Kantzas, A., 2015. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach. Adv. Water Res. 94. 174184.

    • Search Google Scholar
    • Export Citation
  • Bear, J., 1979. Hydraulics of groundwater. McGraw-Hill Co. New York.

  • Beven, K.J. & Germann, P.F., 1982. Macropores and water flow in soils. Wat. Resour. Res. 18. (5) 13111325.

  • Blunt., M.J., 2001. Flow in porous media pore-network models and multiphase flow. Current Opinion in Colloid & Interface Science. 6. 197207.

    • Search Google Scholar
    • Export Citation
  • Boulding, R.S., 1995. Practical handbook of soil vadose zone and groundwater contamination. Boca Raton, Fla.

  • Bouma, J.A., Boersma, A.J. & Schoonderbeek, D., 1977. The function of different types of macropores during saturated flow through four swelling soil horizons. Soil. Sci. Soc. Am. J. 41. 945950.

    • Search Google Scholar
    • Export Citation
  • Brakensiek, D.L., Rawls, W.J., Stephenson, G.R., 1984. Modifying SCS hydrologic soil groups and curve numbers for rangeland soils. ASAE Paper No. PNR-84-203, St. Joseph, MI.

    • Search Google Scholar
    • Export Citation
  • Braun, C., Helming, R. & Manthey, S., 2005. Macro-scale effective conductivity relationship for two-phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation relationship. J. Contam. Hydrol. 76. 12. 4780.

    • Search Google Scholar
    • Export Citation
  • Brunauer, S., Emmett, P.H. & Teller, E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60. 309319.

  • Brutsaert, W., 1966. Probability laws for pore size distributions. Soil Sci., 101. 8592.

  • Budhu, M., Giese, R.F., Campbell, G.Jr. & Baumgrass, L., 1991. The permeability of soils with organic fluids. Can. Geotech. J. 28. 140147.

    • Search Google Scholar
    • Export Citation
  • Burdine, N.T., 1953. Relative permeability calculations from pore size distribution data. Petroleum Transactions, AIME. 198. 7178.

  • Campbell, G.S., 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117. 311314.

  • Campbell, G.S., 1985. Soil physics with basic. Development in soil science. 14. Elsevier. Amsterdam.

  • Campbell, G.S. & Campbell, M.D., 1982. Irrigation scheduling using soil moisture measurements: theory and practice. Adv. Irrig. 1. 2542.

    • Search Google Scholar
    • Export Citation
  • Carman, P.C., 1937. Fluid flow through granular beds. Transactions, Institution of Chemical Engineers. London. 15. 150166.

  • Chapuis R.P. & Aubertin M., 2003. On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil. Can. Geotech J. 40. (3) 616628.

    • Search Google Scholar
    • Export Citation
  • Chapuis R.P. & Légaré P.P., 1992. A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance. ASTM STP 1147. 177186.

    • Search Google Scholar
    • Export Citation
  • Chatzis, I. & Dullien, F.A.L., 1985. The modelling of mercury porosimetry and relative permeability of mercury in sandstones using percolation theory. Int. Chem. Eng. 25. 4765.

    • Search Google Scholar
    • Export Citation
  • Chen, C. & Wagenet, R.J., 1991. Simulation of water and chemicals in macropore soils, I. Representation of the equivalent macropore influence and its effect on soil-water flow. {itJ. Hydrol. 130. 105126.

    • Search Google Scholar
    • Export Citation
  • Chen, S., Low, P.F., Cushman, J.H. & Roth, C.B., 1987. Organic compound effects on swelling and flocculation of Upton montmorillonite. Soil Sci. Soc. Am J. 51. 14441450.

    • Search Google Scholar
    • Export Citation
  • Childs, E.C. & Collis-George, N., 1950. The permeability of porous media. Proc. R. Soc. Lond. 201. 392405.

  • Corey, A.T., 1986. Air permeability. In: Methods of Soil Analysis. (ed.: Klute, A.) 2nd ed. Agyronomy monograph 9. ASA and SSSA. Madison, WI.11211136.

    • Search Google Scholar
    • Export Citation
  • Cosby, B.J., Hornberger, G.M., Clapp, R.B. & Ginn, T.R., 1984. A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20. 6. 682690.

    • Search Google Scholar
    • Export Citation
  • Creswell, H.P. et al., 2000. The SH-Pro V1.03 Software for Predicting and Analysing Soil Hydraulic Properties. CSIRO Land and Water. Canberra, Australia.

    • Search Google Scholar
    • Export Citation
  • Csókás, J. 1995: Vízadó rétegek jellemző hozamának és a víz minőségének meghatározása geofizikai fúrólyukszelvények alapján. Magyar Geofizika. 35. 176203

    • Search Google Scholar
    • Export Citation
  • Dicarlo, D.A., Sahni, A. & Blunt, M.J., 2000. Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks. SPE J. 5. (1) 8291.

    • Search Google Scholar
    • Export Citation
  • Dragun, J., 1998. The soil chemistry of hazardous materials. Amherst scientific publishers. Amherst. Massachusetts.

  • Dullien, F.A.L., 1979. Porous media, Fluid Transport and Pore Structure. Academic Press Inc. New York. ISBN-13:978-0122236518.

  • Dunai, A. & Makó, A., 2011. Talajok folyadékvezető képességének összehasonlító vizsgálata vizes és nem vizes rendszerekben. Talajvédelem különszám. In: Farsang, A. & Ladányi, Zs. (szerk.): Talajaink a változó természeti és társadalmi hatások között. Talajtani vándorgyűlés Szeged, 2010. szeptember 3–4. 331337.

    • Search Google Scholar
    • Export Citation
  • Dunai, A., Makó, A. & Hernádi, H., 2007. A talajok légáteresztő képességének és szerves folyadék vezető képességének összehasonlító vizsgálata. Erdei Ferenc IV. Tudományos Konferencia. Kecskemét. 2007. augusztus 27–28. 971974.

    • Search Google Scholar
    • Export Citation
  • Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 30. 211223.

  • Fatt, I., 1965. The network model of porous media I. Capillary pressure characteristics. Trans AIME. 207. 141159.

  • Fattah, A., 2004. Equations for water/oil relative permeability in Saudi Arabian sandstone reservoirs. Saudi Aramco J. Technol. 4. (1) 4858.

    • Search Google Scholar
    • Export Citation
  • Felsenthal, M., 1959. Correlation of Kg/Ko data with sandstone core characteristics. Trans AIME. 216. 258261.

  • Fernandez, F. & Quigley, R.M., 1985. Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can. Geotech. J. 22. 205214.

    • Search Google Scholar
    • Export Citation
  • Fisher, U. & Celia, M.A., 1999. Prediction of relative and absolute permeabilities for gas and water from water retention curves using a pore-scale network model. Water Resour. Res. 35. 10891100.

    • Search Google Scholar
    • Export Citation
  • Fodor, N., Blaskó, L., Éri, L. & Rajkai, K., 2009. Hidraulikus vezetőképesség mérési és becslési eredmények összehasonlítása homoktalajra. Agrokémia és Talajtan. 58. 369380.

    • Search Google Scholar
    • Export Citation
  • Fodor, N. & Rajkai, K., 2005. Számítógépes program a talajok fizikai és vízgazdálkodási jellemzőinek egyéb talajjellemzőkből történő számítására (TALAJTANonc 1.0). Agrokem. Talajtan. 54. 2540.

    • Search Google Scholar
    • Export Citation
  • Fulcher, R. A., Ertekin, T., & Stahl, C.D., 1985. Effect of capillary number and its constituents on two-phase relative permeability measurements. J. Petrol. Technol. Feb. 249.

    • Search Google Scholar
    • Export Citation
  • Gálfi J. & Liebe P., 1981. Az elektromos fajlagos ellenállás és a szivárgási tényező kapcsolata törmelékes vízadó kőzetekben. Vízügyi Közlemények. 63. 437448.

    • Search Google Scholar
    • Export Citation
  • Gardner, W.R., 1958. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from water table. Soil. Sci. 85. (3) 218232.

    • Search Google Scholar
    • Export Citation
  • Gerhard, J.I. & Kueper, B.H., 2003. Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media. Water Resour. Res. 39.

    • Search Google Scholar
    • Export Citation
  • Gerke, H.H. & van Genuchten, M. Th., 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29. 305319.

    • Search Google Scholar
    • Export Citation
  • Ghanbarian-Alavijeh, B., Hunt, A.G. Ewing, R.P. & Skinner, T.E., 2014. Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophys. Res. Lett. 41. (11) 16.38843890.

    • Search Google Scholar
    • Export Citation
  • Gostick et al., 2016. Open PNM: A pore network modeling package. Comp. Sci. Eng. 18. (4) 6074.

  • Graber, E.R. & Mingelgrin, U., 1994. Clay swelling and regular solution theory. Environ. Sci. Technol. 28. 23602365.

  • Gregg, S.J. & Sing, K.W.S., 1967. Adsorption Surface Area and Porosity. Academic Press. London.

  • Gregson, D., Hector, D.J. & McGowan, M., 1987. A one-parameter model for the soil water characteristic. J. Soil. Sci. 38. 483.

  • Guarnachia, J., Pinder, G. & Fishman, M., 1997. NAPL simulator documentation. National Risk Management Research Laboratory. Ada, OK 74820. EPA/600/R-97/102.

    • Search Google Scholar
    • Export Citation
  • Hardisty, P.E., Wheater, H.S., Birks, D. & Dottridge. J., 2003. Characterization of NAPL in fractures rock. Quat. J. Eng. Geol. Hydrol. 36. (4) 343354.

    • Search Google Scholar
    • Export Citation
  • Hazen, A., 1982. Some physical properties of sands and gravels. Massachusetts State Board of Health. Annual report. 539556.

  • Held, R.J. & Celia, M.A., 2001. Modeling support of functional relationships between capillary pressure, interfacial areas and common lines. Adv. Water Resour. 24. 325343.

    • Search Google Scholar
    • Export Citation
  • Hernádi, H., Barna Gy. & Makó, A., 2017. Folyadék-visszatartás, folyadékvezetés és porozitás összefüggései vízzel és/vagy szerves folyadékkal telített talajokban I. Folyadék-visszatartó képesség — Szemle. Agrokémia és Talajtan. 66. (1) 251282.

    • Search Google Scholar
    • Export Citation
  • Hettiratchi, J.P.A., Hrudey, S.E., Smith, D.W. & Sego, D.C.C., 1988. A procedure for evaluating municiple solid waste leachate components capable of causing volume shrinkage in compacted clay soils Environ. Technol. Letters. 9. 2334.

    • Search Google Scholar
    • Export Citation
  • Hillel, D., 1998. Environmental Soil Physics. Academic Press. San Diego, CA. USA.

  • Hildebrand, J.H., Prausnitz, J.M. & Scott, L.R., 1970. Regular and Related Solutions. Van Nostrand Reinhold, New York.

  • Hirasaki, G., 1975. Sensitivity Coefficients for History Matching Oil Displacement Processes. Soc. Petrol. Eng. J. 15. (1) 3259.

  • Honarpour, M., Koederitz, L., Harvey, A.A., 1986. Relative Permeability of Petroleum Reservoirs. CRC Press Inc. Florida USA.

  • Hui M.H. & Blunt, M.J., 2000. Pore-scale modeling of three-phase flow and the effects of wettability. SPE 59309. Proceedings of the SPE_DOE Improved Oil Recovery Symposium. Tulsa, OK. April, 2000.

    • Search Google Scholar
    • Export Citation
  • Hutson, J.L. & Wagenet, R.J., 1995. A multiregion model describing water flow and solute transport in heterogeneous soils. Soil Sci. Soc. Am. J. 59. 743751.

    • Search Google Scholar
    • Export Citation
  • Iden, S. C. & Durner, W., 2014. Comment on “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters, Water Resour. Res., 50, 75307534, doi:10.1002/2014WR015937.

    • Search Google Scholar
    • Export Citation
  • Irmay, S. 1954. On the hydraulic conductivity of unsaturated soils. Trans. Am. Geophys. Union. 35.

  • Izdebska-Mucha, D. & Trzciński, J., 2008. Effects of petroleum pollution on clay soil microstructure. Geologija. Vilnius. 50. Supplement. 6874.

    • Search Google Scholar
    • Export Citation
  • Iversen, B.V., Moldrup, P., Schjonning, P. & Loll, P., 2001a. Air and water permeability in differently textured soils at two measurement scales. Soil Science. 166. 643659.

    • Search Google Scholar
    • Export Citation
  • Jaines, B. & Tyler, E.J. 1984. Using soil physical properties to estimate hydraulic conductivity. Soil Sci. 138. (4) 298305.

  • Jarsjo, J., Destouni, G. & Yaron, B., 1994. Retention and volatilization of kerosene laboratory experiments on glacial and post glacial soils. J. Contam. Hydrol. 17. 167185.

    • Search Google Scholar
    • Export Citation
  • Jarso, J., Destouni, G. & Yaron, B. 1997. On the relation between viscosity and hydraulic conductivity values for volatile organic liquid mixtures in soils. J. Contam. Hydrol. 25. 113127.

    • Search Google Scholar
    • Export Citation
  • Jarvis, N.J., 1994. The MACRO Model (Version 3.1). Technical Description and Sample Simulations. Reports and Dissertations 19. Department of Soil Science, Swedish University of Agricultural Science. Uppsala, Sweden.

    • Search Google Scholar
    • Export Citation
  • Jarvis N. J. , 2007. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 58. 523546.

    • Search Google Scholar
    • Export Citation
  • Jarvis, N. J., Zavattaro, L., Rajkai, K., Reynolds, W. D., Olsen, P.-A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B. & Jacques, D., 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma. 108. (1–2) 117.

    • Search Google Scholar
    • Export Citation
  • Joekar-Niassar, V., Hassanizadeh, S.M. & Dahle, H.K., 2010. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: Dynamic pore-network modelling, J. Fluid. Mech. 655. 3871.

    • Search Google Scholar
    • Export Citation
  • Joonaki, A. & Ghanaatian, S. 2013. Prediction of Relative Permeability for Multiphase Flow in Fractured Oil Reservoirs by using a soft computing approach. J. Comp. Appl. 73. 4555.

    • Search Google Scholar
    • Export Citation
  • Juhász J. 2002. Hidrogeológia. Akadémiai Kiadó. Budapest.

  • Kinsky, J., Frydman, S. & Zaslavsky, D., 1971. The effect of different dielectric liquids on the engineering properties of clay. Proceedings of fourth Asian regional conference on SFME. 1. 369372.

    • Search Google Scholar
    • Export Citation
  • Klimes-Szmik A. , 1962. A talaj pórusterének beosztása a víz mozgása alapján. Agrokémia és Talajtan. 1. 4154.

  • Kessler, A. & Rubin, H., 1987. Relationships between water infiltration and oil spill migration in sandy soils. J. Hydrol. 91. 187204.

    • Search Google Scholar
    • Export Citation
  • Koekkoek, E. J. W. & Boltink, H., 1999. Neural Network models to predict soil water retention. Am. J. Soil. Sci. 350. 489495.

  • Kool, J. B. & Parker, J. C., 1987. Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23. 105114.

    • Search Google Scholar
    • Export Citation
  • Kosugi, K., 1994. Three-parameter lognormal distribution model for soil water retention. Water. Resour. Res. 30. (4) 891901.

  • Kosugi, K., 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore size distribution. Soil. Sci. Am. J. 63. 270277.

    • Search Google Scholar
    • Export Citation
  • Kosugi, K., Hopmans, J. W. & Dane, J. H., 2002. Parametric models. In: Methods of Soil Analysis (Eds.: Dane, J. H. & Topp, G. C.) 739757. Part 4. SSSA Book Ser. 5. SSSA. Madison,Wis.

    • Search Google Scholar
    • Export Citation
  • Kovács, Gy., 1972. A szivárgás hidraulikája. Akadémiai Kiadó. Budapest.

  • Kozeny, J., 1927. Über kapillare Leitung des Wassers im Boden. Wiener Akademie Wissenschaft. 136. 271.

  • Kueper, B. H. & Frind, E. O., 1991. Two-phase flow in heterogeneous porous media, 1, Model development. Water Resour. Res. 27. 10491057.

    • Search Google Scholar
    • Export Citation
  • Lal, R. & Shukla, M. K., 2004. Principles of Soil Physics. Marcel Dekker. New York.

  • Laliberte, G. E., 1969. A mathematical function for describing capillary pressuredesaturation data. Bull. Int. Assoc. Sci. Hydrol. 142. 131149.

    • Search Google Scholar
    • Export Citation
  • Lebeau, M. & Konrad, J-M., 2010. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 46. W12554.

    • Search Google Scholar
    • Export Citation
  • Lenhard, R.J. & Parker, J.C., 1987. A model for hysteretic constitutive relations governing multiphase flow, 2. Permeability-saturation relations. Water Resour. Res. 23. (12) 21972206.

    • Search Google Scholar
    • Export Citation
  • Leverett, M.C., 1941. Capillary behavior in porous solids. Trans. AIME. 142. 152169.

  • Leverett, M.C. & Lewis, W.B., 1941. Steady flow of gas-oil-water mixtures trough unconsolidated sands. Trans. AIME. 142. 107116.

  • Lian, L.T. & Sagar, B.S.D. 2006. Modeling, description, and characterization of fractal pore via mathematical morphology. Discrete Dyn. Nat. Soc. Article ID 89280.

    • Search Google Scholar
    • Export Citation
  • Loll, P., Moldrup, P., Schjønning, P. & Riley, H., 1999. Predicting saturated hydraulic conductivity from air permeability: application in stochastic water infiltration modeling. Water Resour. Res. 35 8. 23872400.

    • Search Google Scholar
    • Export Citation
  • Lowel, S. & Joen, E.S., 1984. Powder surface area and porosity. 3 rd ed. Chapman & Hall. London.

  • Luckner, L.M., van Genuchten, M. Th. & Nielsen, D.R., 1989. A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25. 21872193.

    • Search Google Scholar
    • Export Citation
  • Makó, A., 1995. Szerves folyadékokkal telített talajok hidraulikus vezetőképessége. II. A becslés lehetőségei. Agrokémia és Talajtan. 44. (1–2) 203220.

    • Search Google Scholar
    • Export Citation
  • Makó, A., 1997. A talaj szilárd fázisa és a szerves folyadékok kölcsönhatásai. Kandidátusi értekezés. Keszthely.

  • Makó, A. & Elek, B., 2006. Measuring the fluid conductivities of soil in multiphase system. Cereal Research Communication. 34. 239242.

    • Search Google Scholar
    • Export Citation
  • Makó, A., Elek, B., Dunai, A. & Hernádi H., 2009. Comparison of nonaqueous phase liquids conductivity and air permeability of different soils. Commun. Soil.Sci. Plant Anal. 40. (1) 787799.

    • Search Google Scholar
    • Export Citation
  • Makó A. & Hernádi H., 2012. Kőolajszármazékok a Talajban: Talajfizikai Kutatások. Pannon Egyetem. Veszprém. Magyarország.

  • Mehmani, Y., Sun, T., Balhoff, M., Eichhubl, P. & Bryant, S., 2012. Multiblock pore-scale modeling and upscaling of reactive transport: application to carbon sequestration. Trans. Porous Media. 95. (2) 305326.

    • Search Google Scholar
    • Export Citation
  • Mehmani, A. & Prodanović, M., 2014. The effect of microporosity on transport properties in porous media. Adv. Water Resour. 63. 104119.

    • Search Google Scholar
    • Export Citation
  • Mesri, G. & Olson, R.E., 1971. Consolidation characteristics of montmorillonite. Geotechnique. 21. 341352.

  • Miller, E.E. & Miller, R.D., 1956. Physical theory of capillary flow phenomena. J. Appl. Phys. 27. 324332.

  • Minasny, B., Hopmans, J.W., Harter, T., Eching, S.O., Tuli, A. & Denton, M.A., 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci. Soc. Am. J. 68. 417429.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J.K. & Madsen, F.T., 1987. Chemical effects on clay hydraulic conductivity. In: Proc. Speciality Conference on Geotechnical practice for waste disposal. 87116.

    • Search Google Scholar
    • Export Citation
  • Mohanty, B.P., Skaggs & van Genuchten, M.Th., 1998. Impact of saturated hydraulic conductivity on the prediction of tile flow. Soil Sci. Soc. Am. J. 62. 15221529.

    • Search Google Scholar
    • Export Citation
  • Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12. 513521.

  • Mualem, Y. & Dagan. G., 1975. A dependent domain model of capillary hysteresis. Water Resour. Res. 11. 3. 452460.

  • Murray, R.S. & Quirk, J.P., 1982. The physical swelling of clays in solvents. Soil Sci. Soc. Am. J. 46. (4) 865868.

  • Nagarajarao, Y., 1994. Pore size distribution measurements in swell-shrink soils. J. Plant. Nutr. Soil. Sci. 157. (2) 8185.

  • Nasta, P., Romano, N., Assouline, S., Vrugt, J. & Hopmans, J.W., 2013. Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions. Water Resour. Res. 49. 42194229.

    • Search Google Scholar
    • Export Citation
  • Nimmo, J.R., 1997. Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61. 712719.

  • Nimmo, J. R., Herkelrath, W. N. & Laguna Luna, A. M., 2007. Physically based estimation of soil water retention from textural data: general framework, new models, and streamlined existing models. Vadose Z. J. 6. 766773.

    • Search Google Scholar
    • Export Citation
  • Olejnik, S., Posner, A.M. & Quirk, J.P., 1974. Swelling of montmorillonite in polar organic liquids. Clays & Clay Minerals. 22. 361365.

    • Search Google Scholar
    • Export Citation
  • Oostrom, M. & Lenhard, R. J., 2003. Carbon tetrachloride flow behavior in unsaturated hanford calcic material: an investigation of residual nonaqueous phase liquids. Vadose Zone J. 2. 2533.

    • Search Google Scholar
    • Export Citation
  • Oostrom, M., Dane, J.H. & Wietsma, T. W., 2005. Removal of carbon tetrachloride from a layered porous medium by mean of soil vapor extraction enhanced by desiccation and water table reduction. Vadose Z. J. 4. 11701182.

    • Search Google Scholar
    • Export Citation
  • Othmer, H., Diekkrüger, B. & Kutilek, M., 1991. Bimodal porosity and unsaturated hydraulic conductivity. Soil Sci. 152. 139149.

  • Øren, P.-E., Bakke, S. & Arntzen, O.J., 1998. Extending predictive capabilities to network models SPE J. Richardson. 3. 324336.

  • Pachepsky, Y.A., Rawls, W.J. & Lin, H.S., 2006a. Hydropedology and pedotransfer functions. Geoderma. 131. 308316.

  • Pachepsky, Y. A., Guber, Ak. K., van Genuchten, M. Th., Nicholson, T.J., Cady, R.E., Šimůnek, J. & Schaap, M.G., 2006b. Model abstraction techniques for soil water flow and transport. NUREG/CR-688.

    • Search Google Scholar
    • Export Citation
  • Pham, H. Q., Fredlund, D.G. & Barbour, S.L., 2005. A study of hysteresis models for soil-water characteristic curves. Canadian Geotechnical J. 42. 15481568.

    • Search Google Scholar
    • Export Citation
  • Parker, J.C. & Lenhard, R.J., 1987. A model of hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations. Water Resour. Res. 23. 21872196.

    • Search Google Scholar
    • Export Citation
  • Paterson L. , Painter S., Zhang X., Pinczewski W.V., 1998. Simulating residual saturation and relative permeability in heterogeneous formations. SPE J. 3. 211218.

    • Search Google Scholar
    • Export Citation
  • Pennell, K.D., Pope, G.A. & Abriola, L.M., 1996. Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ. Sci. Technol. 30. 13281335.

    • Search Google Scholar
    • Export Citation
  • Peters, A., 2013. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res. 49. 67656780.

    • Search Google Scholar
    • Export Citation
  • Peters, A. & Durner, W., 2008. Simplified evaporation method for determining soil hydrulic properties. J. Hydrol. 356. 147162.

  • Philip, J.R. & de Vries, D.A., 1957. Moisture movement in porous materials under temperature gradients. Trans. Amer. Geophys. Union. 38. 222232.

    • Search Google Scholar
    • Export Citation
  • Piri, M. & Blunt, M.J., 2005. Three-dimensional mixed-wet random pore-scale network modelling of two- and three-phase flow in porous media. II. Results. Phys. Rev. E, 71. (2) 026302.

    • Search Google Scholar
    • Export Citation
  • Pope, G.A., Sepehrnoori, K., Sharma, M.M., McKinney, D.C., Speitel, G.E. & Jackson, R. E., 1999. Three-dimensional NAPL fate and transport model. U. S. Environmental Protection Agency.

    • Search Google Scholar
    • Export Citation
  • Purcell, W.R., 1949. Capillary pressures –Their measurements using Mercury and calculation of permeability. Trans. AIME. 186. 3948.

    • Search Google Scholar
    • Export Citation
  • Rajkai K. , 1984. A talaj kapilláris vezetőképességének számítása a pF-görbe alapján, Agrokémia és Talajtan. 33. 5062.

  • Rajkai K. , 2004. A víz mennyisége, eloszlása és áramlása a talajban. MTA Talajtani és Agrokémiai Kutatóintézet. Budapest.

  • Raoof, A. & Hassanizadeh, S.M., 2009. A new method for generating porenetwork models of porous media. Transp. Porous Media. 81. (3) 391407.

    • Search Google Scholar
    • Export Citation
  • Raoof, A., nick, H., Hassanizadeh, S. & Spiers, C. 2013. PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 61. 160174.

    • Search Google Scholar
    • Export Citation
  • Rathfelder, K. & Abriola, L.M., 1996. The influence of capillarity in numerical modelling of organic liquid redistribution in two-phase systems. Adv. Water Resour. 21. (2) 159170.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J. & Brakensiek, D. L., 1985. Prediction of soil water properties for hydrologic modeling. In: Watershed Management in the 1980s. Proceeding of Symposium of Irrig. Drainage Div., Denver, CO., April 30–May 1, 1985. ASCE. NY. 293299.

    • Search Google Scholar
    • Export Citation
  • Reeves, P.C. & Celia, M.A., 1996. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour Res. 32. 23452358.

    • Search Google Scholar
    • Export Citation
  • Roghanian, R. Rasaei, M. R. & Haghighi, M., 2010, Key point prediction of water-oil relative permeability curves using linear regression technique. Petrol. Sci. Technol. 30. (5) 518533.

    • Search Google Scholar
    • Export Citation
  • Romano, N. & Nasta, P., 2016. How effective is bimodal soil hydraulic characterization? Functional evaluations for predictions of soil water balance. Eur. J. Soil Sci. 67. 523535.

    • Search Google Scholar
    • Export Citation
  • Rubin, H., Narkis, N. & Carberry, J., 1998. Soil and Aquifer Pollution. Nonaqueous Phase Liquis –Contamination and Reclamation. Springer-Verlag. Berlin.

    • Search Google Scholar
    • Export Citation
  • Rudiyanto, R., Sakai, M., Van Genuchten, M.Th., Alazba, A.A., Setiawan, B.I. & Minasny, B., 2015. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis. Water Resour. Res. 51. WR017703.

    • Search Google Scholar
    • Export Citation
  • Schaap, M.G., Leij, F.J. & van Genuchten, M.Th., 1999. A bootstrap neuralnetwork approach to predict soil hydraulic parameters. In: Proc. of the International Workshop on Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media (Eds.: van Genuchten, M.Th., Leij, F.J. & Wu, L.). University of California. Riverside, CA. 12371250.

    • Search Google Scholar
    • Export Citation
  • Schaap, M.G. & van Genuchten, M.Th., 2006. A modified Mualem-van Genuchten formulation for improved description ot the hydraulic conductivity near saturation. Vadose Z. J. 5. 2734.

    • Search Google Scholar
    • Export Citation
  • Schaap, M.G., Leij, F., J. & van Genuchten, M.Th., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251. 163176.

    • Search Google Scholar
    • Export Citation
  • Shahverdi, H., Sohrabi, M., fatemi, S.M. & jamiolahmady, M., 2011. Three-phase relative permeability and hysteresis effect during WAG process in mixed and low IFT systems. J. Pet. Sci. Eng. 78. 732739.

    • Search Google Scholar
    • Export Citation
  • Šimůnek, J., Jarvis, N.J., van Genuchten, M. Th. & Gärdenäs, A., 2003. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272. 1435.

    • Search Google Scholar
    • Export Citation
  • Šimůnek, J.,Sejna, M. & van Genuchten, M.Th., 1998. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC-TPS-70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado.

    • Search Google Scholar
    • Export Citation
  • Šimůnek, J.,Sejna, M. & van Genuchten, M.Th., 1999. The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC-TPS-53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado.

    • Search Google Scholar
    • Export Citation
  • SSSA, 2008. Soil Science Society of America: Glossary of soil science terms. Mad WI.

  • Steiakakis, E., Gamvroudis, C. & Alevizos, G., 2012. Kozeny-Carman equation and hydraulic conductivity of compacted clayey soils. Geomaterials. 12. 3741.

    • Search Google Scholar
    • Export Citation
  • Tamari, S., Wösten, J.H.M. & Ruiz-Sárez, J.C., 1996. Testing an artificial neural network for predicitng soil hydraulic conductivity. Soil Sci. Soc. Am. J. 60. 17321741.

    • Search Google Scholar
    • Export Citation
  • Tsakiroglou, C.D. & Fleury, M., 1999. Pore network analysis of resistivity index for water-wet porous media. Transport in Porous Media. 35. 89128.

    • Search Google Scholar
    • Export Citation
  • Tuli, A. & Hopmans, J.W., 2004. Effect of degree of fluid saturation on transport coefficients in disturbed soils. Eur. J. Soil Sci. 55. 147164.

    • Search Google Scholar
    • Export Citation
  • Tuller, M. & Or, D., 2001. Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour. Res. 37. (5) 12571276.

    • Search Google Scholar
    • Export Citation
  • Tuller, M. & Or, D. 2005. Water films and scaling of soil characteristic curves at low water contents. Water. Resour. Res. 41. W09403.

  • Tuller, M., Or, D. & Dudley, L.M., 1999. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35. (7) 19491964.

    • Search Google Scholar
    • Export Citation
  • Tyler, S. & Wheatcraft, S., 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53. 987996.

    • Search Google Scholar
    • Export Citation
  • Valvatne, P.H. & Blunt, M.J., 2004. Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour Res. 40. W07406.

  • van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44. 892898.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M.Th. & Nielsen, D.R., 1985. On describing and predicting the hydaulic properties of unsaturated soils. Annales Geophysicae. 3. (5) 615628.

    • Search Google Scholar
    • Export Citation
  • van Olphen, H., 1963. An introduction to clay colloid chemistry. Interscience Publ. New York.

  • Veeecken, H., 1995. Estimating the unsaturated hyraulic conductivity from theoretical models using simple soil properties. Geoderma. 65. 8192.

    • Search Google Scholar
    • Export Citation
  • Vereecken, H., Maes, J. & Feyen, J. 1990. Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci. 149. 112.

    • Search Google Scholar
    • Export Citation
  • Vereecken, H., Kasteel, Vanderborght, J. & Harter, T., 2007. Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review. Vadose Zone J. 6. 128.

    • Search Google Scholar
    • Export Citation
  • Vereecken et al., 2016. Modeling soil process: Review, key challenges, and new perspectives. Vadose Zone J. 15. 157.

  • Weaver, J.W., Charbeneau, R.J., Tauxe, J.D., Lien, B.K. & Provost, J.B., 1994. The hydrocarbon spill screening model (HSSM). 1. USEPA. EPA/600/R–94/039a. Ada. Okl.

    • Search Google Scholar
    • Export Citation
  • Vogel, H.J., & Roth, K., 2001. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour, 24. (3) 233242.

    • Search Google Scholar
    • Export Citation
  • Walsh, D., 2008. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. Journal of Applied Geophysics. 66. (3–4) 140150.

    • Search Google Scholar
    • Export Citation
  • Werth., C.H., Zhang, C., Brusseau, M.L., Oostrom, M. & Baumann, T., 2010. A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J. Contam. Hydrol. 113. 124.

    • Search Google Scholar
    • Export Citation
  • White, M.D. & Oostrom, M., 2006. STOMP Subsurface transport over multiple phases. Version 4. PNNL 15782.

  • Wösten, J.H.M., Lilly, A., Nemes, A. & Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma. 90. 169185.

    • Search Google Scholar
    • Export Citation
  • Wösten, J.H.M., Pachepsky, Y.A. & Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251. 123150.

    • Search Google Scholar
    • Export Citation
  • Xiong, G., Baychev, T.G. & Jivkov, A.P., 2016. Review of pore network modelling of porous media: Experimetnal characterisations, network constructions and applications to reactive transport. J. Contam. Hydr. 192. 101107.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z.F., 2011. Soil water retention and relative permeability for conditions from oven-dry to full saturation. Vadose Z. J. 10. 12991308.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 3 0 4
Oct 2020 0 0 0
Nov 2020 5 9 1
Dec 2020 7 0 1
Jan 2021 9 0 0
Feb 2021 6 1 4
Mar 2021 0 0 0