Willow was cultivated as an energy crop in a field experiment. The brown forest soil was treated with an inorganic fertilizer (ammonium nitrate−AN: 100 kg ha-1) or with various organic or mineral soil amendments (municipal biocompost–MBC: 20 t ha−1; municipal sewage sludge compost–MSSC: 15 t ha−1; rhyolite tuff–RT: 30 t ha−1; willow ash−WA: 600 kg ha−1), or their combinations (AN+MBC; AN+RT; AN+WA, MSSC+WA) in four replications. Nineteen months after the soil treatments the macroelement-rich amendments (MBC, MSSC) enhanced the harvested fresh shoot yield most significantly (up to 41% as compared to the untreated control), and also the shoot diameter and shoot height of the willow plants. Most of the treatments enhanced the uptake of N (9.8-23.5%) and K in willow leaves, but the concentrations of P, Mg, Ca, Fe and Zn in the leaves were reduced. The toxic element (As, Cd, Pb) accumulation of willow shoots was negligible.
In a 4-year field experiment the effects of the mineral fertilizers AN and AN+calcium-magnesium carbonate (CMC) were studied on the mineral nutrition of the leaves and wood yield of black locust trees cultivated as an energy crop. The brown forest soil was treated with 300 kg ha−1 annual doses of these fertilizers as top-dressing in June 2009, May 2010 and May 2011. Both fertilizers caused a three to four times increase in the nitrate content of the upper soil soon after their application in June. By the end of the vegetation period (in December) the nitrate concentration in the soil was similar to that in the control plots. The nitrogen content of the leaf stalks (petioles) and leaves, however, was only slightly higher in the treated plots. As a trend, fertilization increased the phosphorus and reduced the calcium uptake in the leaf stalks and leaves, while the magnesium content was not influenced. In March 2012, when the whole trees were harvested, 22% or 28% higher aboveground fresh shoot weight was detected in the AN or AN+CMC treatments than in the control.
Blanco-Canqui, H. 2010. Energy crops and their implications on soil and environment. Agron. J. 102. 403–403.
Blaskó, L. , 2008. Cultivation of energy plants, site suitability, availability. In: Renewable Agriculture. (ed.: Chlepkó, T.). 167–207. Magyar Katolikus Rádió. Budapest. (in Hungarian).
Brinks, J., Lhotka, J., Barton, C. 2011. One-year response of American sycamore (Platanus occidentalis L.) and black locust (Robinia pseudoacacia L.) to granular fertilizer applications on a reclaimed surface mine in Eastern Kentucky. In: Proceedings of the 17th Central Hardwood Forest Conference. April 5-7 2010; Lexington, KY. (eds.: Fei, S., et al.). 306–313. Gen. Tech. Rep. NRS-P-78. U.S. Department of Agriculture, Forest Service, Northern Research Station. Newtown Square, PA. https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-78papers/32brinksp78.pdf (May 2018)
Dimitriou, I. Eriksson, J., Adlerac, A., Aronsson, P., Verwijst, T., 2006. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ. Pollut. 142. (1) 160–169.
Gyuricza, C. 2011. Cultivation of woody energy crops (5.). Plant nutrition in energy plantations. Agrofórum. March 2011. 92–96. (in Hungarian).
Gyuricza, C., Nagy, L., Ujj, A., Mikó, P., Alexa, L., 2008. The impact of composts on the heavy metal content of the soil and plants in energy willow plantations (Salix sp.). Cereal Res. Commun. 36. (Supplement 5) 279–282.
Harta I. , Gulyás M., Füleky G. 2016. Effect of long-term fertilization in a black locust plantation. Agrokém. Talajt. 65. (1) 31–45. (in Hungarian)
Institute of Medicine and National Research Council 2015. A Framework for Assessing Effects of the Food System. Annex 4. Nitrogen in Agroecosystems. (eds.: Nesheim, M.C., Oria M., Yih, P.T.) The National Academies Press. Washington DC.
Kanzler, M., Böhm, C., Freese D., 2015. Impact of P fertilisation on the growth performance of black locust (Robinia pseudoacacia L.) in a lignite postmining area in Germany. Ann. For. Res. 58. (1) 39–54.
Mantovani, D., Veste, M., Boldt-Burisch, K., Fritsch, S., Koning, L.A., Freese, D., 2015. Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation. Ann. For. Res. 58. (2) 1–16.
Nicolescu, V-R., Hernea, C., Bakti, B., Keserű, Z., Antal, B., Rédei, K., 2018. Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: a review. J. For. Res. https://doi.org/10.1007/s11676- 018-0626-5 (published online 19 March 2018).
Park, B.B. Yanai, R.D., Sahm, J.M. , Ballard, B.D., Abrahamson, L.P., 2005. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy. 28. (4) 355–365.
Patzek, T.W., Pimentel, D. 2005. Thermodynamics of energy production from biomass. Crit. Rev. Plant Sci. 24. (5-6) 327–364.
Plass, W. T. , 1972. Fertilization treatments increase black locust growth on extremly acid surface-mine spoils. Tree Planters’ Notes. 23. (3) 10–12.
Rédei, K. & Keserű, Z. 2008. Promising white poplar (Populus alba L.) clones in sandy ridges between the rivers Danube and Tisza in Hungary. Int. J. Horticult. Sci. 14. (1-2) 113– 116
Rédei, K. & Veperdi, I. 2009. The role of black locust (Robinia pseudoacacia L.) in establishment of short-rotation energy plantations in Hungary. Int. J. Horticult. Sci. 15 (3) 41–44.
Sevel, L., Nord-Larsen, T., Ingerslev, M., Jørgensen, U., Raulundrasmussen, K., 2014a. Fertilization of SRC willow, I: Biomass production response. Bioenerg. Res. 7. 319–328.
Sevel, L., Ingerslev, M., Nord-Larsen, T., Jørgensen, U., Holm, P.E., Schelde, K., Raulund-Rasmussen, K., 2014b. Fertilization of SRC willow, II: Leaching and element balances. Bioenerg. Res. 7. 338–352.
Simon L. , Szabó B., Szabó M., Varga C., Vincze G., 2011a. Investigation of the yield and mineral nutrient supply of energy crops with special attention to combined application of nitrogen fertilizers and biosolids. Innovation research report prepared for Nitrogénművek Vegyipari Co (Pétfürdő, Hungary). College of Nyíregyháza. Technical and Agricultural Faculty. Nyíregyháza. Hungary. 1–91. (in Hungarian).
Simon L. , Szabó B., Kalmárné Vass E., Vincze G., Varga C., Barna S., Koncz J., 2011b. Experiences of nitrogen fertilization in black locust energy plantation. In: Proc. 7th Carpathian Basin Environmental Science Conference, Vol. 1. Cluj-Napoca, Romania, March 24-27, 2011. (eds.: Mócsy, I., Szacsvai, K., Urák, I., Zsigmond, A.R., Szikszai, A.). 145–149. Ábel Publisher. Cluj-Napoca. Romania. (in Hungarian)
Simon, L., Szabó, B., Szabó, M., Vincze, G., Varga, C, Uri, ZS., Koncz, J., 2013a. Effect of various soil amendments on the mineral nutrition of Salix viminalis and Arundo donax energy crops. Eur. Chem. Bull. 2. (1) 18–21.
Simon, L., Makádi, M., Vincze, GY., Szabó, B., Szabó, M., Aranyos, T., 2013b. Impact of ammonium nitrate and rhyolite tuff soil application on the photosynthesis and growth of energy willow. In: International Multidisciplinary Conference. 10th edition. May 22-24, 2013. Baia Mare, Romania – Nyíregyháza, Hungary. (eds.: Ungureanu, N., Cotetiu, R., Sikolya, L., Páy, G.). 143–146. Scientific Bulletin Serie C. Fascicle: Mechanics, Tribology, Machine Manufacturing Technology. Bessenyei Book Publisher. Nyíregyháza (Hungary).
Simon L. Vincze G. , Uri Z., Irinyiné Oláh K., Vígh S., Makádi M., Aranyos T., Zsombik L., 2016. Long-term field fertilization experiment with energy willow (Salix sp.) − experiences of the first 5 years. Növényterm. 65. (2) 59–76. (in Hungarian).
Simon, L. Makádi, M., Vincze, G., Uri, Z., Irinyiné Oláh, K., Zsombik, L., Vígh, SZ., Szabó, B., 2018. Long-term field fertilization experiment with energy willow (Salix sp.) − Elemental composition and chlorophyll fluorescence in the leaves. Agrokém. Talajt. 67. (1.) 91–104.
Simon, L., Szente, K. 2000. Effect of sewage sludge compost on the nitrogen uptake, on several physiological parameters and yield of maize. Agrokém. Talajt. 49. (1-2) 231–246 (in Hungarian)
Smart, B.L. & Cameron, K.D., 2012. Shrub willow. In: Handbook of Bioenergy Crop Plants. (eds.: Kole, C., Joshi, C.P. & Shonnard, D.R.) 687–708. CRC Press. Boca Raton, London, New York.
Straker, K.C., Quinn, L.D., Voigt, T.B., Lee, D.K., Kling, D.J., 2015. Black locust as a bioenergy feedstock: a review. BioEnergy Res. 8. (3) 1117–1135.
Szabó B. , Simon L., Makádi M., Vincze G., Szabó M., 2011. Effect of rhyolite tuff on the yield parameters of maize, sour cherry, energy willow cultures. Innovation research report prepared for Colas-Északkő Bányászati Ltd., (Tarcal, Hungary). College of Nyíregyháza, Technical and Agricultural Faculty. (Nyíregyháza, Hungary). 1–35. (in Hungarian).
Zabó B. , Szabó M., Varga C., Vágvölgyi S., Simon L., 2012. Effect of rhyolite tuff on the growth parameters of energy willow. In: 36th Óvár Scientific Day. Hungarian Agriculture. Possibilities − resources − ideas. Mosonmagyaróvár. Hungary. October 5, 2012. (ed.: Kovácsné Gaál, K.). 471–476 (CD proceedings, ISBN 978-963-9883-93-2) (in Hungarian).
Van Sambeek, J.W., Navarrete-Tindall, N.E., Hunt, K.L., 2008. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan. In: Proceedings of the 16th Central Hardwood Forest Conference. 2008 April 8-9; West Lafayette. (eds.: Jacobs, D. F.; Michler, C. H.). 580–588. Gen. Tech. Rep. NRS-P-24. U. S. Department of Agriculture, Forest Service, Northern Research Station. Newtown Square, PA. https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-24%20papers/63vansambeek-p-24.pdf (May 2018)