Climate change is expected to have a vigorous impact on soils and ecosystems due to elevated temperature and changes in precipitation (amount and frequency), thereby altering biogeochemical and hydrological cycles. Several phenomena associated with climate change and anthropogenic activity affect soils indirectly via ecosystem functioning (such as higher atmospheric CO2 concentration and N deposition). Continuous interactions between climate and soils determine the transformation and transport processes. Long-term gradual changes in abiotic environmental factors alter naturally occurring soil forming processes by modifying the soil water regime, mineral composition evolution, and the rate of organic matter formation and degradation. The resulting physical and chemical soil properties play a fundamental role in the productivity and environmental quality of cultivated land, so it is crucial to evaluate the potential outcomes of climate change and soil interactions. This paper attempts to review the underlying long-term processes influenced by different aspects of climate change. When considering major soil forming factors (climate, parent material, living organisms, topography), especially climate, we put special attention to soil physical properties (soil structure and texture, and consequential changes in soil hydrothermal regime), soil chemical properties (e.g. cation exchange capacity, soil organic matter content as influenced by changes in environmental conditions) and soil degradation as a result of longterm soil physicochemical transformations. The temperate region, specifically the Carpathian Basin as a heterogeneous territory consisting of different climatic and soil zones from continental to mountainous, is used as an example to present potential changes and to assess the effect of climate change on soils. The altered physicochemical and biological properties of soils require accentuated scientific attention, particularly with respect to significant feedback processes to climate and soil services such as food security.
Amezketa, E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture. 14. (2-3) 83–151.
Anderson, D.W. 1988. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry. 5. 71–71.
Bard, D., Burch, B., Robinette, C., Weibley, E., Wentz, C. & Vasilas L. 2017. Soil Study Guide. Maryland Envirothon. http://mdenvirothon.org/wp-content/uploads/2017/12/soil-studyguide_ revised_2017.pdf
Bartholy J. , Horányi A., Krüzselyi I., Pieczka I., Pongrácz R., Szabó P., Szépszó G. & Torma C. 2011 A várható éghajlatváltozás dinamikus modelleredmények alapján. In: Bartholy J., Bozó L. & Haszpra L. (ed.): Klímaváltozás – 2011 MTA-ELTE Meteorológia Tanszék – Budapest – 2011 –281 p. ISBN: 978-963-284-232-5
Bartholy, J., Pongrácz, R. & Gelybó, G. 2007. Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research. 5. 1–1.
Bärring, L., Jönsson, P., Mattsson, J.O. & Åhman, R. 2003. Wind erosion on arable land in Scania, Sweden and the relation to the wind climate—a review. Catena. 52. 173–190.
Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T. & Woth, K. 2007. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change. 81. 71–71.
Birkás, M., Dexter, A. & Szemők, A. 2009. Tillage-induced soil compaction, as a climate threat increasing stressor. Cereal Res Commun. 37. 379–382.
Birkeland, P.W. 1999. Soils and Geomorphology. 3rd ed. Oxford University Press, New York
Bockheim, J.G. 1980. Solution and use of chronofunctions in studying soil development. Geoderma. 24. 71–71.
Bockheim, J.G., Gennadiyev, A.N., Hartemink, A.E. & Brevik E.C. 2014. Soil forming factors and soil taxonomy. Geoderma. 226–227. 231-237.
Bormann, H. 2012. Assessing the soil texture-specific sensitivity of simulated soil moisture to projected climate change by SVAT modelling. Geoderma. 185-186. 73–83.
Bray, E.A. 1997. Plant response to water deficit. Trends in Plant Science. 2. 48–54.
Brinkman, R. & Brammer, H. 1990. The influence of a changing climate in soil properties. In: Trans. 14th ISSS Congress, Kyoto, 1990, 5. 283–287.
Buytaert, W., Cuesta-Camacho, F. & Tobon, C. 2011. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography. 20. 19–33.
Calanca, P. 2007. Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes? Global and Planetary Change. 57. 151–160.
Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osorio, M.L., Carvalho, I., Faria, T. & Pinheiro, C. 2002. Plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany. 89. 907–907.
Christensen, J.H. & Christensen, O.B. 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change. 81. 7–30.
Crocker, L. & Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier bay, Alaska. Journal of Ecology. 43. 427–448.
Cubasch, U., Wuebbles, D., Chen, D., Facchini, M.C., Frame, D., Mahowald, N. & Winther, J.-G., 2013. Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Dokuchaev, V.V. 1899. K ucheniiu o zonakh prirody: Gorizontal’nye i vertikal’nye pochvennye zony. St. Petersburg, 1899 Learnings about environmental zonality. Horizontal and vertical soil zones. (in Russian). http://www.geokniga.org/books/3459
Farkas, C. 2009. Stochastic assessment of climate change effects on soil water regime in the Hungarian Bodrog Interfluve Region. In: Halasi-Kun, G. Ed. Scientific and Social-Institutional Aspects of Central Europe and USA. Pollution and Water Resources. Columbia University Seminar Proceedings; New York-Bratislava: Columbia University, 2008-2009; vol. XXXVIIIXXXIX. 348–366.
Farkas, C., Hernádi, H., Makó, A., Máté, F. 2009. Mészlepedékes csernozjom talajok talajváltozatainak klímaérzékenysége. "Klíma-21" füzetek. 57. 15–15.
Farkas, C., Gelybó, G., Bakacsi, Z., Horel, A., Hagyó, A., Dobor, L., Kása, I. & Tóth, E. 2014. Impact of expected climate change on soil water regime under different vegetation conditions. Biologia. 69. 1510–1519.
Favis-Mortloc, D. & Boardman, J. 1995. Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena. 25. 1365–387.
Giorgi, F. & Lionello, P. 2008. Climate change projections for the Mediterranean region. Global and Planetary Change. 63. 90–104.
Gomes, L., Arrue, J.L., Lopez, M.V., Sterk, G., Richard, D., Gracia, R., Sabre, M., Gaudichet, A. & Frangi, J.P. 2003. Wind erosion in a semiarid agricultural area of Spain: the WELSONS project. Catena. 52. 235–235.
Gottschalk, P., Smith, J.U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., Osborn, T. J., Jones, C. & Smith, P. 2012. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios, Biogeosciences. 9. 3151-3171.
Hernádi, H., Farkas, C., Makó, A. & Máté, F. 2009. Climate sensitivity of soil water regime of different Hungarian Chernozem soil subtypes. Biologia. 64. 624–628,
Hillel, D. 1973. Soil and Physical principles and processes (3rd ed). Academic Press, Inc. 248 p.
Holsten, A., Vetter, T., Vohland, K., & Krysanova, V. 2009. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecological Modelling. 220. 2076–2087.
Horel, Á., Tóth, E., Gelybó, GY., Kása, I., Bakacsi, ZS. & Farkas, CS. 2015. Effect of land use and management on soil hydraulic properties. Open Geoscience. 1. 742–742.
Hotchkiss, S., Vitousek, P.M., Chadwick, O.A. & Price, J., 2000. Climate cycles, geomorphological change, and the interpretation of soil and ecosystem development. Ecosystems. 3. 522–522.
Ipcc Climate Change, 2007. Working Group II: Impacts, Adaptation and Vulnerability, 13.2.1.2.3. Biologically mediated soil properties. http://www.ipcc.ch/ipccreports/tar/wg2/index.php?idp=498
Istanbulluoglu, E. & Bras, R.L. 2006. On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change. Water Resources Research. 42. W06418.
Jakab, G., Szabó, J., Szalai, Z., Mészáros, E., Madarász, B. CENTERI, CS., Szabó, B., Németh, T. & Sipos, P. 2016. Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates. Environmental Earth Sciences. 75. 144.
Jenny, H. 1941. Factors of Soil Formation. A System of Quantitative Pedology. McGraw Hill Book Company, New York, NY, USA. 281 p. ISBN: 0486681289
Kopittke, G.R., Tietema, A. & Verstraten, J.M. 2012. Soil acidification occurs under ambient conditions but is retarded by repeated drought: Results of a field-scale climate manipulation experiment. Science of the Total Environment. 439. 332–342.
Krüzselyi, I., Bartholy, J., Horányi, A., Pieczka, I., Pongrácz, R., Szabó, P., Szépszó, G. & Torma, Cs. 2011. The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble. Advances in Science and Research. 6. 69–69.
Kutílek M. 2011. Soils and climate change. Soil and Tillage Research. 117. 1–7.
Lakatos, M. & Bihari, Z., 2011. A közelmúlt megfigyelt hőmérsékleti- és csapadéktendenciái. In: Bartholy J., Bozó L., Haszpra L. (eds.): Klímaváltozás – 2011 MTA-ELTE Meteorológia Tanszék – Budapest – 2011 – 281p. ISBN: 978-963-284-232-5
Lal, R. 2010. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security. 2. 169–177.
Láng, I., Csete, L. & Jolánkai, M. 2007. A globális klímaváltozás: hazai hatások és válaszok. A VAHAVA jelentés. Szaktudás Kiadó Ház, Budapest. (in Hungarian)
Lavee, H., Imeso, A.C. & Sarah, P. 1998. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degradation & Development. 9. 407–422.
Li, S., Lobb, D.A. & Mcconkey, B.G. 2010. The impacts of land use on the risk of soil erosion on agricultural land in Canada. In: World Congress of Soil Science, Soil Solutions for a Changing World Brisbane, Australia.
Mack, G.H. 1991. Paleosols as an indicator of climatic change at the early-late cretaceous boundary, Southwestern New Mexico. Journal of Sedimentary Petrology. 62. 483–483.
Meehl, G.A., Zwiers, F., Evans, J., Knutson, T. Mearns, L. & Whetton, P. 2000. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society. 81. 427–436.
Mills, R.T.E., Gavazov, K.S., Spiegelberger, T., Johnson, D. & Buttler, A. 2014. Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Science of the Total Environment. 473-474. 465–472.
Molnar, P. & England, P. 1990. Late Cenozoic uplift of montain ranges and global climate change: chicken or egg? Nature. 346. 29–29.
Mullan, D., Favis-Mortlock, D. & Fealy, R. 2012. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agricultural and Forest Meteorology. 156. 18–30.
Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Crawford Elliott, W. & Hendricks D.M. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology. 202. 195–223.
Pivchenko, D. 2010. Climate as a factor of soil formation. BSc thesis, Moscow Agricultural Academy named after Timiryazev, Moscow. (in Russian)
Porporato, A., Daly, E. & Rodriguez-Iturbe, I. 2004. Soil water balance and ecosystem response to climate change. The American Naturalist. 164. 625–32.
Post, W., Emanuel, W., Zinke, P. & Stangenberger, A. 1982. Soil carbon pools and world life zones. Nature. 298. 156–159.
Pruski, F.F. & Nearing, M.A. 2002. Runoff and soil loss changes expected for changes in precipitation patterns under global climate change. J Soil Water Conserv. 57. 7–16.
Rahimi, H., Pazira, E. & Tajik, F. 2000. Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil & Tillage Research. 54. 145–145.
Rawls, W. J., Pachepsky, Y.A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. 2003. Effect of soil organic carbon on soil water retention. Geoderma. 116. 61–76.
Rengasamy, P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany. 57. 1017–1023.
Reubens, B., Poesen, J., Danjon, F., Geudens, G. & Muys, B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees. 21. 385–402.
Rey, A. 2015. Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biology. 21. 1752–1752.
Robertson, G.P., Sollins, P., Ellis, B.G. & Lajtha, K. 1999. Exchangable ions, pH, and cation exchange capacity. In: Standard Soil Methods for Long-Term Ecological Research, Oxford University Press, New York. 106–111.
Rosenzweig, C. & Hillel, D. 1995. Potential impacts of climate change on agriculture and food supply. Consequences. 1. 24–31.
Rounsevell, M., Evans, S.P. & Bullock, P. 1999. Climate change and agricultural soils: impacts and adaptation. Climatic Change. 43. 683–709.
Sarah, P. 2005. Soil aggregation response to long- and short-term differences in rainfall amount under arid and Mediterranean climate conditions. Geomorphology. 70. 1–11.
Scharpenseel, H.W., Schomaker, M. & Ayoub, A. (eds.) 1990. Soils on a Warmer Earth. Elsevier, Amsterdam, 274p.
Singh, B.P., Cowie, A.L. & Chan, K.Y. (eds.) 2011. Soil Health and Climate Change, Soil Biology, Springer-Verlag Berlin Heidelberg, 1–414.
Shiono, T., Ogawa, S., Miyamoto, T. & Kameyama, K. 2013. Expected impacts of climate change on rainfall erosivity of farmlands in Japan. Ecological Engineering, 61. 378–378.
Szász, G., Cselőtei, L., & Kovács, G. J. 1994. Az időjárás és a növénytermesztés. In: Az agrárgazdaság jövőképe. (eds.: Láng, I., Csete, L., Dohy, J., Harnos, Z., Kocsis, K. & Várallyay, G.). 50–87. „AGRO-21” Füzetek. 1 „AGRO- 21” Kutatási Programiroda.
Šurda, P., Lichner, L., Nagy, V., Kollar, J., Iovino, M. & Horel, A. 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia. 70. 1474–1479.
Targulian, V.O. & Krasilnikov, P.V. 2007. Soil system and pedogenic processes: Self-organization, time scales, and environmental significance. Catena. 71. 373–381.
Tóth, E., Gelybó, G., Dencső, M., Kása, I., Birkás, M. & Horel, Á. 2018. Chapter 19 – Soil CO2 emissions in a long-term tillage treatment experiment A2 - Muñoz, María Ángeles. In: Soil Management and Climate Change. (ed. R. ZORNOZA), Academic Press, 293–307.
Van Dam, J.C. 2000. Field-scale water flow and solute transport. Ph.D. thesis, Wageningen University, The Netherlands, 167 p.
Várallyay, G. , 2005. Magyarország talajainak vízraktározó képessége. Agrokémia és Talajtan. 54. 1–1.
Várallyay, G. 2007. Potential Impacts of Climate Change on Agro-ecosystems. Agriculturae Conspectus Scientificus. 72. 1–1.
Várallyay, G. 2008. Talaj–víz kölcsönhatások a klímaváltozás tükrében. Talajvédelem különszám. (in Hungarian) 17–30.
Várallyay, G. 2010. The impact of climate change on soils and on their water management. Agronomy Research. 8. (Special Issue II). 385–396.
Verheijen, F.G., Jones, R.J., Rickson, R.J. & Smith, C.J. 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews. 94. 23–38.
Vermeire, L.T., Wester, D.B., Mitchell, R.B. & Fuhlendorf, S.D. 2005. Fire and grazing effects on wind erosion, soil water content, and soil temperature. Journal of Environmental Quality. 34. 1559–1559.
Vitousek, P., Chadwick, O., Matson, P., Allison, S., Derry, L., Kettley, L., Luers, A., Mecking, E., Monastra, V., & Porder, S. 2003. Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems. 6. 762–762.
Walter, J., Hein, R., Beierkuhnlein, C., Hammerl, V., Jentsch, A., Schädler, M., Schuerings, J. & Kreyling, J. 2013. Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biology & Biochemistry. 60. 10–18.
White, A.F., & Brantley, S.L. 1995. Chemical weathering rates of silicate minerals: an overview. In: Chemical Weathering Rates of Silicate Minerals. White, A.F., Brantley, S.L. (eds.). Mineralogical Society of America, Chantilly, 1–22.
Yaalon, D.H. 1983. Climate, time and soil development. In: Wilding, L.P., Smeck, N.E. & Hall, G.F. (eds.). Pedogenesis and Soil Taxonomy. I. Concepts and Interactions, Elsevier Science Publishers B.V., Amsterdam, The Netherlands. 233–251.
Yan H. , Wang S., Wang C., Zhang G. & Patel N. 2005. Losses of soil organic carbon under wind erosion in China. Global Change Biology. 11. 828-840.