View More View Less
  • 1 Hungarian Academy of Science, Budapest, Hungary
  • | 2 NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

Climate change is expected to have a vigorous impact on soils and ecosystems due to elevated temperature and changes in precipitation (amount and frequency), thereby altering biogeochemical and hydrological cycles. Several phenomena associated with climate change and anthropogenic activity affect soils indirectly via ecosystem functioning (such as higher atmospheric CO2 concentration and N deposition). Continuous interactions between climate and soils determine the transformation and transport processes. Long-term gradual changes in abiotic environmental factors alter naturally occurring soil forming processes by modifying the soil water regime, mineral composition evolution, and the rate of organic matter formation and degradation. The resulting physical and chemical soil properties play a fundamental role in the productivity and environmental quality of cultivated land, so it is crucial to evaluate the potential outcomes of climate change and soil interactions. This paper attempts to review the underlying long-term processes influenced by different aspects of climate change. When considering major soil forming factors (climate, parent material, living organisms, topography), especially climate, we put special attention to soil physical properties (soil structure and texture, and consequential changes in soil hydrothermal regime), soil chemical properties (e.g. cation exchange capacity, soil organic matter content as influenced by changes in environmental conditions) and soil degradation as a result of longterm soil physicochemical transformations. The temperate region, specifically the Carpathian Basin as a heterogeneous territory consisting of different climatic and soil zones from continental to mountainous, is used as an example to present potential changes and to assess the effect of climate change on soils. The altered physicochemical and biological properties of soils require accentuated scientific attention, particularly with respect to significant feedback processes to climate and soil services such as food security.

  • Amezketa, E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture. 14. (2-3) 83151.

  • Anderson, D.W. 1988. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry. 5. 7171.

    • Search Google Scholar
    • Export Citation
  • Bard, D., Burch, B., Robinette, C., Weibley, E., Wentz, C. & Vasilas L. 2017. Soil Study Guide. Maryland Envirothon. http://mdenvirothon.org/wp-content/uploads/2017/12/soil-studyguide_ revised_2017.pdf

    • Search Google Scholar
    • Export Citation
  • Bartholy J. , Horányi A., Krüzselyi I., Pieczka I., Pongrácz R., Szabó P., Szépszó G. & Torma C. 2011 A várható éghajlatváltozás dinamikus modelleredmények alapján. In: Bartholy J., Bozó L. & Haszpra L. (ed.): Klímaváltozás – 2011 MTA-ELTE Meteorológia Tanszék – Budapest – 2011 –281 p. ISBN: 978-963-284-232-5

    • Search Google Scholar
    • Export Citation
  • Bartholy, J., Pongrácz, R. & Gelybó, G. 2007. Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research. 5. 11.

    • Search Google Scholar
    • Export Citation
  • Bärring, L., Jönsson, P., Mattsson, J.O. & Åhman, R. 2003. Wind erosion on arable land in Scania, Sweden and the relation to the wind climate—a review. Catena. 52. 173190.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T. & Woth, K. 2007. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change. 81. 7171.

    • Search Google Scholar
    • Export Citation
  • Birkás, M., Dexter, A. & Szemők, A. 2009. Tillage-induced soil compaction, as a climate threat increasing stressor. Cereal Res Commun. 37. 379382.

    • Search Google Scholar
    • Export Citation
  • Birkeland, P.W. 1999. Soils and Geomorphology. 3rd ed. Oxford University Press, New York

  • Bockheim, J.G. 1980. Solution and use of chronofunctions in studying soil development. Geoderma. 24. 7171.

  • Bockheim, J.G., Gennadiyev, A.N., Hartemink, A.E. & Brevik E.C. 2014. Soil forming factors and soil taxonomy. Geoderma. 226227. 231-237.

  • Bormann, H. 2012. Assessing the soil texture-specific sensitivity of simulated soil moisture to projected climate change by SVAT modelling. Geoderma. 185-186. 7383.

    • Search Google Scholar
    • Export Citation
  • Bray, E.A. 1997. Plant response to water deficit. Trends in Plant Science. 2. 4854.

  • Brinkman, R. & Brammer, H. 1990. The influence of a changing climate in soil properties. In: Trans. 14th ISSS Congress, Kyoto, 1990, 5. 283287.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., Cuesta-Camacho, F. & Tobon, C. 2011. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography. 20. 1933.

  • Calanca, P. 2007. Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes? Global and Planetary Change. 57. 151160.

    • Search Google Scholar
    • Export Citation
  • Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osorio, M.L., Carvalho, I., Faria, T. & Pinheiro, C. 2002. Plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany. 89. 907907.

    • Search Google Scholar
    • Export Citation
  • Christensen, J.H. & Christensen, O.B. 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change. 81. 730.

  • Crocker, L. & Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier bay, Alaska. Journal of Ecology. 43. 427448.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., Wuebbles, D., Chen, D., Facchini, M.C., Frame, D., Mahowald, N. & Winther, J.-G., 2013. Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    • Search Google Scholar
    • Export Citation
  • Dokuchaev, V.V. 1899. K ucheniiu o zonakh prirody: Gorizontal’nye i vertikal’nye pochvennye zony. St. Petersburg, 1899 Learnings about environmental zonality. Horizontal and vertical soil zones. (in Russian). http://www.geokniga.org/books/3459

    • Search Google Scholar
    • Export Citation
  • Farkas, C. 2009. Stochastic assessment of climate change effects on soil water regime in the Hungarian Bodrog Interfluve Region. In: Halasi-Kun, G. Ed. Scientific and Social-Institutional Aspects of Central Europe and USA. Pollution and Water Resources. Columbia University Seminar Proceedings; New York-Bratislava: Columbia University, 2008-2009; vol. XXXVIIIXXXIX. 348366.

    • Search Google Scholar
    • Export Citation
  • Farkas, C., Hernádi, H., Makó, A., Máté, F. 2009. Mészlepedékes csernozjom talajok talajváltozatainak klímaérzékenysége. "Klíma-21" füzetek. 57. 1515.

    • Search Google Scholar
    • Export Citation
  • Farkas, C., Gelybó, G., Bakacsi, Z., Horel, A., Hagyó, A., Dobor, L., Kása, I. & Tóth, E. 2014. Impact of expected climate change on soil water regime under different vegetation conditions. Biologia. 69. 15101519.

    • Search Google Scholar
    • Export Citation
  • Favis-Mortloc, D. & Boardman, J. 1995. Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena. 25. 1365387.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F. & Lionello, P. 2008. Climate change projections for the Mediterranean region. Global and Planetary Change. 63. 90104.

  • Gomes, L., Arrue, J.L., Lopez, M.V., Sterk, G., Richard, D., Gracia, R., Sabre, M., Gaudichet, A. & Frangi, J.P. 2003. Wind erosion in a semiarid agricultural area of Spain: the WELSONS project. Catena. 52. 235235.

    • Search Google Scholar
    • Export Citation
  • Gottschalk, P., Smith, J.U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., Osborn, T. J., Jones, C. & Smith, P. 2012. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios, Biogeosciences. 9. 3151-3171.

    • Search Google Scholar
    • Export Citation
  • Hernádi, H., Farkas, C., Makó, A. & Máté, F. 2009. Climate sensitivity of soil water regime of different Hungarian Chernozem soil subtypes. Biologia. 64. 624628,

    • Search Google Scholar
    • Export Citation
  • Hillel, D. 1973. Soil and Physical principles and processes (3rd ed). Academic Press, Inc. 248 p.

  • Holsten, A., Vetter, T., Vohland, K., & Krysanova, V. 2009. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecological Modelling. 220. 20762087.

    • Search Google Scholar
    • Export Citation
  • Horel, Á., Tóth, E., Gelybó, GY., Kása, I., Bakacsi, ZS. & Farkas, CS. 2015. Effect of land use and management on soil hydraulic properties. Open Geoscience. 1. 742742.

    • Search Google Scholar
    • Export Citation
  • Hotchkiss, S., Vitousek, P.M., Chadwick, O.A. & Price, J., 2000. Climate cycles, geomorphological change, and the interpretation of soil and ecosystem development. Ecosystems. 3. 522522.

    • Search Google Scholar
    • Export Citation
  • Ipcc Climate Change, 2007. Working Group II: Impacts, Adaptation and Vulnerability, 13.2.1.2.3. Biologically mediated soil properties. http://www.ipcc.ch/ipccreports/tar/wg2/index.php?idp=498

    • Search Google Scholar
    • Export Citation
  • Istanbulluoglu, E. & Bras, R.L. 2006. On the dynamics of soil moisture, vegetation, and erosion: implications of climate variability and change. Water Resources Research. 42. W06418.

    • Search Google Scholar
    • Export Citation
  • Jakab, G., Szabó, J., Szalai, Z., Mészáros, E., Madarász, B. CENTERI, CS., Szabó, B., Németh, T. & Sipos, P. 2016. Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates. Environmental Earth Sciences. 75. 144.

    • Search Google Scholar
    • Export Citation
  • Jenny, H. 1941. Factors of Soil Formation. A System of Quantitative Pedology. McGraw Hill Book Company, New York, NY, USA. 281 p. ISBN: 0486681289

    • Search Google Scholar
    • Export Citation
  • Kopittke, G.R., Tietema, A. & Verstraten, J.M. 2012. Soil acidification occurs under ambient conditions but is retarded by repeated drought: Results of a field-scale climate manipulation experiment. Science of the Total Environment. 439. 332342.

    • Search Google Scholar
    • Export Citation
  • Krüzselyi, I., Bartholy, J., Horányi, A., Pieczka, I., Pongrácz, R., Szabó, P., Szépszó, G. & Torma, Cs. 2011. The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble. Advances in Science and Research. 6. 6969.

    • Search Google Scholar
    • Export Citation
  • Kutílek M. 2011. Soils and climate change. Soil and Tillage Research. 117. 17.

  • Lakatos, M. & Bihari, Z., 2011. A közelmúlt megfigyelt hőmérsékleti- és csapadéktendenciái. In: Bartholy J., Bozó L., Haszpra L. (eds.): Klímaváltozás – 2011 MTA-ELTE Meteorológia Tanszék – Budapest – 2011 – 281p. ISBN: 978-963-284-232-5

    • Search Google Scholar
    • Export Citation
  • Lal, R. 2010. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security. 2. 169177.

    • Search Google Scholar
    • Export Citation
  • Láng, I., Csete, L. & Jolánkai, M. 2007. A globális klímaváltozás: hazai hatások és válaszok. A VAHAVA jelentés. Szaktudás Kiadó Ház, Budapest. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Lavee, H., Imeso, A.C. & Sarah, P. 1998. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degradation & Development. 9. 407422.

    • Search Google Scholar
    • Export Citation
  • Li, S., Lobb, D.A. & Mcconkey, B.G. 2010. The impacts of land use on the risk of soil erosion on agricultural land in Canada. In: World Congress of Soil Science, Soil Solutions for a Changing World Brisbane, Australia.

    • Search Google Scholar
    • Export Citation
  • Mack, G.H. 1991. Paleosols as an indicator of climatic change at the early-late cretaceous boundary, Southwestern New Mexico. Journal of Sedimentary Petrology. 62. 483483.

    • Search Google Scholar
    • Export Citation
  • Meehl, G.A., Zwiers, F., Evans, J., Knutson, T. Mearns, L. & Whetton, P. 2000. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society. 81. 427436.

    • Search Google Scholar
    • Export Citation
  • Mills, R.T.E., Gavazov, K.S., Spiegelberger, T., Johnson, D. & Buttler, A. 2014. Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Science of the Total Environment. 473-474. 465472.

    • Search Google Scholar
    • Export Citation
  • Molnar, P. & England, P. 1990. Late Cenozoic uplift of montain ranges and global climate change: chicken or egg? Nature. 346. 2929.

  • Mullan, D., Favis-Mortlock, D. & Fealy, R. 2012. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agricultural and Forest Meteorology. 156. 1830.

    • Search Google Scholar
    • Export Citation
  • Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Crawford Elliott, W. & Hendricks D.M. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology. 202. 195223.

    • Search Google Scholar
    • Export Citation
  • Pivchenko, D. 2010. Climate as a factor of soil formation. BSc thesis, Moscow Agricultural Academy named after Timiryazev, Moscow. (in Russian)

    • Search Google Scholar
    • Export Citation
  • Porporato, A., Daly, E. & Rodriguez-Iturbe, I. 2004. Soil water balance and ecosystem response to climate change. The American Naturalist. 164. 62532.

    • Search Google Scholar
    • Export Citation
  • Post, W., Emanuel, W., Zinke, P. & Stangenberger, A. 1982. Soil carbon pools and world life zones. Nature. 298. 156159.

  • Pruski, F.F. & Nearing, M.A. 2002. Runoff and soil loss changes expected for changes in precipitation patterns under global climate change. J Soil Water Conserv. 57. 716.

    • Search Google Scholar
    • Export Citation
  • Rahimi, H., Pazira, E. & Tajik, F. 2000. Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil & Tillage Research. 54. 145145.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Pachepsky, Y.A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. 2003. Effect of soil organic carbon on soil water retention. Geoderma. 116. 6176.

    • Search Google Scholar
    • Export Citation
  • Rengasamy, P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany. 57. 10171023.

  • Reubens, B., Poesen, J., Danjon, F., Geudens, G. & Muys, B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees. 21. 385402.

    • Search Google Scholar
    • Export Citation
  • Rey, A. 2015. Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biology. 21. 17521752.

  • Robertson, G.P., Sollins, P., Ellis, B.G. & Lajtha, K. 1999. Exchangable ions, pH, and cation exchange capacity. In: Standard Soil Methods for Long-Term Ecological Research, Oxford University Press, New York. 106111.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C. & Hillel, D. 1995. Potential impacts of climate change on agriculture and food supply. Consequences. 1. 2431.

  • Rounsevell, M., Evans, S.P. & Bullock, P. 1999. Climate change and agricultural soils: impacts and adaptation. Climatic Change. 43. 683709.

    • Search Google Scholar
    • Export Citation
  • Sarah, P. 2005. Soil aggregation response to long- and short-term differences in rainfall amount under arid and Mediterranean climate conditions. Geomorphology. 70. 111.

  • Scharpenseel, H.W., Schomaker, M. & Ayoub, A. (eds.) 1990. Soils on a Warmer Earth. Elsevier, Amsterdam, 274p.

  • Singh, B.P., Cowie, A.L. & Chan, K.Y. (eds.) 2011. Soil Health and Climate Change, Soil Biology, Springer-Verlag Berlin Heidelberg, 1414.

    • Search Google Scholar
    • Export Citation
  • Shiono, T., Ogawa, S., Miyamoto, T. & Kameyama, K. 2013. Expected impacts of climate change on rainfall erosivity of farmlands in Japan. Ecological Engineering, 61. 378378.

    • Search Google Scholar
    • Export Citation
  • Szász, G., Cselőtei, L., & Kovács, G. J. 1994. Az időjárás és a növénytermesztés. In: Az agrárgazdaság jövőképe. (eds.: Láng, I., Csete, L., Dohy, J., Harnos, Z., Kocsis, K. & Várallyay, G.). 5087. „AGRO-21” Füzetek. 1 „AGRO- 21” Kutatási Programiroda.

    • Search Google Scholar
    • Export Citation
  • Šurda, P., Lichner, L., Nagy, V., Kollar, J., Iovino, M. & Horel, A. 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia. 70. 14741479.

    • Search Google Scholar
    • Export Citation
  • Targulian, V.O. & Krasilnikov, P.V. 2007. Soil system and pedogenic processes: Self-organization, time scales, and environmental significance. Catena. 71. 373381.

    • Search Google Scholar
    • Export Citation
  • Tóth, E., Gelybó, G., Dencső, M., Kása, I., Birkás, M. & Horel, Á. 2018. Chapter 19 – Soil CO2 emissions in a long-term tillage treatment experiment A2 - Muñoz, María Ángeles. In: Soil Management and Climate Change. (ed. R. ZORNOZA), Academic Press, 293307.

    • Search Google Scholar
    • Export Citation
  • Van Dam, J.C. 2000. Field-scale water flow and solute transport. Ph.D. thesis, Wageningen University, The Netherlands, 167 p.

  • Várallyay, G., 2005. Magyarország talajainak vízraktározó képessége. Agrokémia és Talajtan. 54. 11.

  • Várallyay, G. 2007. Potential Impacts of Climate Change on Agro-ecosystems. Agriculturae Conspectus Scientificus. 72. 11.

  • Várallyay, G. 2008. Talaj–víz kölcsönhatások a klímaváltozás tükrében. Talajvédelem különszám. (in Hungarian) 1730.

  • Várallyay, G. 2010. The impact of climate change on soils and on their water management. Agronomy Research. 8. (Special Issue II). 385396.

    • Search Google Scholar
    • Export Citation
  • Verheijen, F.G., Jones, R.J., Rickson, R.J. & Smith, C.J. 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews. 94. 2338.

    • Search Google Scholar
    • Export Citation
  • Vermeire, L.T., Wester, D.B., Mitchell, R.B. & Fuhlendorf, S.D. 2005. Fire and grazing effects on wind erosion, soil water content, and soil temperature. Journal of Environmental Quality. 34. 15591559.

    • Search Google Scholar
    • Export Citation
  • Vitousek, P., Chadwick, O., Matson, P., Allison, S., Derry, L., Kettley, L., Luers, A., Mecking, E., Monastra, V., & Porder, S. 2003. Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems. 6. 762762.

    • Search Google Scholar
    • Export Citation
  • Walter, J., Hein, R., Beierkuhnlein, C., Hammerl, V., Jentsch, A., Schädler, M., Schuerings, J. & Kreyling, J. 2013. Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biology & Biochemistry. 60. 1018.

    • Search Google Scholar
    • Export Citation
  • White, A.F., & Brantley, S.L. 1995. Chemical weathering rates of silicate minerals: an overview. In: Chemical Weathering Rates of Silicate Minerals. White, A.F., Brantley, S.L. (eds.). Mineralogical Society of America, Chantilly, 122.

    • Search Google Scholar
    • Export Citation
  • Yaalon, D.H. 1983. Climate, time and soil development. In: Wilding, L.P., Smeck, N.E. & Hall, G.F. (eds.). Pedogenesis and Soil Taxonomy. I. Concepts and Interactions, Elsevier Science Publishers B.V., Amsterdam, The Netherlands. 233251.

    • Search Google Scholar
    • Export Citation
  • Yan H. , Wang S., Wang C., Zhang G. & Patel N. 2005. Losses of soil organic carbon under wind erosion in China. Global Change Biology. 11. 828-840.

    • Search Google Scholar
    • Export Citation

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Publication
Programme
2021 Volume 70
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 9 0 0
Jul 2021 23 0 0
Aug 2021 44 0 0
Sep 2021 61 0 0
Oct 2021 57 1 1
Nov 2021 73 0 0
Dec 2021 10 0 0