The emission of particulate matter from agricultural sources is a worldwide environmental issue due to health concerns.
The main factors influencing PM10 emission from crop production are the origin of particles, the physical and chemical properties of soils, meteorological conditions, and the mechanical impacts of farm operations. Several studies have been made to determine PM10 emission factors for tillage operations, but these emission factors varied depending on soil properties, especially soil texture and water content, and environmental conditions (e.g. relative humidity, and variability in wind speed and direction). This is why the use of a single emission factor for a given tillage operation is inadequate.
To estimate the yearly amount of PM10 emitted from agricultural soils and crop production, emissions originating from different sources at different temporal division must be summarized. Because 56 % of the total territory of Hungary is cropland, relatively high PM10 emission occurs from crop production and agricultural soils. If this is to be reduced, research should focus on the identification of soil and environmental properties related to PM10 emission on characteristic Hungarian soils.
Aimar, S.B., Mendez, M.J., Funk, R., Buschiazzo, D.E., 2012. Soil properties related to potential particulate matter emissions (PM10) of sandy soils. Aeolian Res. 3. 437–443.
Alfaro, S.C. , 2008. Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion. Geomorphology 93. 157–167.
Avecilla F. , Panebianco J. E., Buschiazzo D. E., 2016. A wind-tunnel study on saltation and PM10 emission from agricultural soils. Aeolian Research. 22. 73–83.
Avecilla F. , Panebianco J. E., Buschiazzo D. E., 2017. Meteorological conditions during dust (PM10) emission from a tilled loam soil: Identifying variables and thresholds. Agricultural and Forest Meteorology. 244–245. 21-32.
Baker, J.B., Southard, R.J., Mitchell, J.P., 2005. Agricultural dust production in standard and conservation tillage systems in the San Joaquin Valley. Journal of Environmental Quality. 34. 1260–1269.
Bogman, P., Cornelis, W., Rolle, H., Gabriels, D., 2005. Prediction of TSP and PM10 emissions from agricultural operations in Flanders, Belgium. In: 14th International Conference “Transport and Air Pollution”, Graz, Austria, June 1-3, 2005.
Bolte, K., Hartmann, P., Fleige, H., Horn, R., 2011. Determination of critical soil water content and matric potential for wind erosion. J. Soils Sediments. 11. 209–220
Capareda, S. C., Wang, L., Parnell Jr., C. B., and Shaw, B. W., 2004. Particle size distribution of particulate matter emitted by agricultural operations: Impacts on FRM PM10 and PM2.5 Concentration Measurements. In: Proc. of the 2004 Beltwide Cotton Production Conferences, National Cotton Council, Memphis, Tenn.
Carvacho, O.F., Ashbaugh, L.L., Brown, M.S., Flocchini, R.G., 2004. Measurement of PM2.5 emission potential from soil using the UC Davis resuspension test chamber. Geomorphology. 59. 75–80.
Cassel T , Trzepla-Nabaglo K, Flocchini R. 2003. PM10 emission factors for harvest and tillage of row crops. International Emission Inventory Conference ‘Emission Inventories – Applying New Technologies’, San Diego, 29 April to 1 May. https://www3.epa.gov/ttn/chief/conference/ei12/poster/cassel.pdf
CEIP, 2015, ‘Officially reported emission data’, the Convention on Long-range Transboundary Air Pollution Centre on Emission Inventories and Projections (http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/reporte d_emissiondata/), last accessed September 2016.
Clausnitzer, H., Singer, M.J., 1996. Respirable-dust production from agricultural operations in the Sacramento Valley, California. J. Environ. Qual. 25. 877–884.
Chen, W.N., Dong, Z.B., Li, Z.S., Yang, Z.T., 1996. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. J. Arid Environ. 34. 391–402.
Chen, W., Tong, D., Zhang, S., Dan, M., Zhang, X., Zhao, H., 2015. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China. Journal of Environmental Science. 38. 133–133.
Chen W. , Tong, D.Q., Zhang S., ZHANG, X, Zhao, H., 2017. Local PM10 and PM2,5 emission inventories from agricultural tillage and harvest in northeastern China. Journal of Environmental Science. 57. 15–15.
Chepil W. S. 1956. Influence of moisture on erodibility of soil by wind. Soil Science Society of America Journal. 20. 288–292.
Cornelis, W. M., Gabriels, D., 2003. The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models. Sedimentology. 50. 771–790.
Coscolla, C., Munoz, A., Borras, E., Vera, T., Rodenas, M., Yusa, V., 2014. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area. Atmospheric Environment. 95. 29–29.
Cowherd C. , Axetell K., Guenther, C.M., Jutze, G.A. 1974. Development of Emission Factors for Fugitive Dust Sources, USEPA-450/3-74-037. United States Environmental Protection Agency (USEPA), Research Triangle Park, NC.
Csavina J. , Field J.P., Felix O., Corral-Avitia A.Y., Saez A.E., Betterton E.A., 2014. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci. Total Environ. 487. 82-90
Darke, I., Neuman, C.M., 2008. Field study of beach water content as a guide to wind erosion potential. J. Coastal Res. 24. 1200–1208.
De Oro L. , Buschiazzo D.E., 2009. Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degrad. Develop. 20. 14–14.
DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe
DIRECTIVE 2016/2284/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC
EEA, 2017. Air quality in Europe - 2017 report, EEA Report No 13/2017, European Environment Agency, 2017, https://www.eea.europa.eu/publications/airquality- in-europe-2017
EMEP/EEA, 2016. EMEP/EEA air pollutant emission inventory guidebook 2016 — Technical guidance to prepare national emission inventories, EEA Technical Report No 21/2016, European Environment Agency (http://www.eea.europa.eu/emep-eea-guidebook), accessed 30 September 2016.
EU, (2017) The EU Environmental Implementation Review Country Report – HUNGARY Brussels, 3.2.2017 SWD 46 final, COMMISSION STAFF WORKING DOCUMENT, EUROPEAN COMMISSION, 2017 http://ec.europa.eu/environment/eir/country-reports/index2_en.htm
Farsang A. , Duttmann R., Bartus M., Szatmári J., Barta K., Bozsó G. (2013): Estimation of soil material transportation by wind based on in situ wind tunnel experiments. Journal of Environmental Geography 6. (3–4) 13–20.
Faulkner, W. B., Capareda, S. C., 2012. Effects of sweeping depth on particulate matter emissions from almond harvest operations. Atmospheric Pollution Research. 3. 219–219.
Flocchini, R.G., James, T.A., Ashbaugh, L.L., Brown, M.S., Carvacho, O.F., Holmén, B.A., Matsumura, R.T., Trzeplanabaglo, K., Tsubamoto, C. 2001. Sources and Sinks of PM10 in the San Joaquin Valley – Interim Report. United States Department of Agriculture Special Research Grants Program; Contract Nos. 94-33825-0383 and 98-38825-6063. Air Quality Group, Crocker Nuclear Laboratory, University of California, Davis.
Funk, R., Reuter, H.I., 2004. Dust production from arable land caused by wind erosion and tillage operations. In: Eurosoil 2004, September 4th to 12th, Freiburg, Germany: Abstracts: 254; Freiburg (Albert-Ludwigs-Universität).
Funk, R., Reuter, H.I., Hoffmann, C., Engel, W., Öttl, D., 2008. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Proc. Land. 33. (12) 1851–1863.
Gao F. , Feng G., Sharratt B., Zhang M., 2014. Tillage and straw management affect PM10 emission potential in subarctic Alaska. Soil Tillage Res. 144. 1–1.
Gillette, D.A., Fryrear, D.W., Gill, T.E., Ley, T., Cahill, T.A., Gearhart, E.A., 1997a. Relation of vertical flux of particles smaller than 10 μm to total aeolian horizontal mass flux at Owens Lake. J. Geophys. Res. 102. 26009–26015.
Goossens D. , Gross J., Spaan W., 2001. Aeolina dust dynamics in agricultural land areas n Lower Saxony, Germany. Earth Surface Processes and Landforms 26. 701–720 (2001) DOI: 10.1002/esp.216
Hagen, L.J., Van Pelt, S., Sharratt, B., 2010. Estimating the saltation and suspension components from field wind erosion. Aeolian Res. 1. 147–153.
Hinz, T. , 2004. Agricultural PM10 emission from plant production. Proceedings of the PM Emission Inventories Scientific Workshop.
Hinz, T., Tamoschat-Depolt, K. (eds.), 2007. ‘Particulate Matter in and from Agriculture’, Landbauforschung Völkenrode. Special Issue 308.
Hoffmann C. , Funk R., 2015. Diurnal changes of PM10-emission from arable soils in NE-Germany. Aeolian Research. 17. 117–127.
Holmén, B.A., James, T.A., Ashbaugh, L.L., Flocchini, R.G., 2001a. LIDARassisted measurement of PM10 emissions from agricultural tilling in California’s San Joaquin Valley - Part I: lidar. Atmospheric Environment. 35. 3251–3251.
Holmén, B.A., James, T.A., Ashbaugh, L.L., Flocchini, R.G., 2001b. LIDARassisted measurement of PM10 emissions from agricultural tilling in California’s San Joaquin Valley - Part II: Emission factors. Atmospheric Environment. 35. 3265–3277.
Hussein T. , Karppinen A., 2006. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 40. 1427-1440.
Informative Inventory ReporT 2015 – Hungary., 2017. Hungarian Meteorological Service pp. 176. http://www.ceip.at/ms/ceip_home1/ceip_home/status_reporting/2017_submiss ions/
Iturri L.A. , Funk R., Leue M., Sommer M., Buschiazzo D. E., 2017. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Research. 28. 39–49.
Kasumba, J., Holmen, B.A., Hiscox, A., Wang, J., Miller, D., 2011. Agricultural PM10 emissions from cotton field disking in Las Cruces, NM. Atmospheric Environment. 45. 1668–1674.
Kjelgaard J. , Chandler D., Saxton K., 2004. Evidence for direct suspension of loessial soils on the Columbia Plateau. Earth Surf. Process. Landforms. 29. 221–221.
Kok J. F. , Parteli E. J. R., Michaels T. I., Karam D.B., 2012. The physics of wind-blown sand and dust. Rep. Prog. Phys. 75. 106901. https://arxiv.org/ftp/arxiv/papers/1201/1201.4353.pdf
Le Blond, J. S., Woskie, S., Horwell, C. J., Williamson, B. J., 2016. Particulate matter produced during commercial sugarcane harvesting and processing: A respiratory health hazard? Atmospheric Environment. 149. 34–34.
Madden N.M. , Southard R.J., Mitchell J.P., 2008. Conservation tillage reduces PM10 emissions in dairy forage rotations. Atmospheric Environment. 42. (16) 3795–3808.
Madden N.M. , Southard R.J., Mitchell J.P., 2010. Soil water and particle size distribution influence laboratory-generated PM10. Atmos. Environ. 44. 745-752.
Matsumura, R.T., Ashbaugh, L., James, T., Carvacho, O., Flocchini, R., 2003. Size distribution of PM10 soil dust emissions from harvesting crops. In: Rapport, D.J., Lasley, W.L., Rolston, D.E., Nielsen, N.O., Qualset, C.O., Damania, A.B. (eds.), Managing for Healthy Ecosystems. Boca Raton, FL: CRC Press. pp. 801–806.
Mendez M. J. , Panebianco J.E., Buschiazzo D.E., 2013. A new dust generator for laboratory dust emission studies. Aeolian Research. 8. 59–59.
Mendez M. J. , Aimar S. B., Buschiazzo D. E., 2015. PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems. Aeolian Research. 19. 195–195.
Négyesi G , Lóki J., Buró B., Szabó J., Bakacsi Z., Pásztor L. (2015): The potential wind erosion map of an area covered by sandy and loamy soils – based on wind tunnel measurements. Zeitschrift für Geomorphologie. 59. (1) 59–77.
Öttl, D., Funk, R., Sturm, P., 2005. PM emission factors for farming activities. In: Proceedings of the 14th Symposium Transport and Air Pollution, 1–3.6 2005, Technical University Graz, Austria
Öttl D. , Funk R., 2007. PM emission factors for farming activities by means of dispersion modeling. Landbauforschung Völkenrode. SH308. 173–177.
Pásztor L. , Négyesi G., Laborczi A., Kovács T., László E., Bihari Z. (2016): Integrated spatial assessment of wind erosion risk in Hungary. Nat. Hazards Earth Syst. Sci. 16. 2421–2432.
Pearce, D., Crowards, T., 1996. Particulate matter and human health in the United Kingdom. Energy Policy. 24. (7) 609–619.
Pease, P., Gare, P., Lecce, S., 2002. Eolian dust erosion from an agricultural field on the North Carolina Coastal Plain. Phys. Geogr. 23. 381–400.
Qiu, G., Pattey, E., 2008. Estimating PM10 emissions from spring wheat harvest using an atmospheric tracer technique. Atmospheric Environment. 42. 8315-8321.
Roney, J.A., White, B.R., 2006. Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel. Atmos. Environ. 40. (40) 7668–7685.
Selah, A., Fryrear, D.W., 1995. Threshold wind velocities of wet soils as affected by wind blown sand. Soil Sci. 160. 304–309.
Sharratt B. , Feng G., 2009. Windblown dust influenced by conventional and undercutter tillage within the Columbia Plateau, USA. Earth Surf. Process. Landf., 34. 1323–1323.
Sharratt B.S. , Vaddella V., 2014. Threshold friction velocity of crusted windblown soils in the Columbia Plateau. Aeolian Res. 15. 227–227.
Sharratt B. , Wendling L., Feng G., 2010. Windblown dust affected by tillage intensity during summer fallow Aeolian Res. 2. 129–129.
Sharratt B. , Wendling L., Feng G., 2012. Surface characteristics of a windblown soil altered by tillage intensity during summer fallow. Aeolian Res. 5. 1–7.
Singh P. , Sharratt B., Schillinger W.F., 2012. Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil & Tillage Research. 124. 219–225.
Stovern M. , Rine K.P., Russell M.R., Fèlix O., King M., Sàez A.E., Betterton E.A., 2015. Development of a dust deposition forecasting model for mine tailings impoundments using in situ observations and particle transport simulations. Aeolian Res. 18. 155–155.
Swet, N., Katra, I., 2016. Reduction in soil aggregation in response to dust emission processes. Geomorph. 268. (1) 177–183.
Van Der Hoek, K., Hinz, T., 2007. Particulate matter emissions from arable production - A guide for UNECE emission inventories. In: Hinz, T., Tamoschat, Depolt, K. (eds.). Particulate Matter in and from Agriculture. Landbauforschung Völkenrode. Special Issue308. 15–19.
Van Der Zee, S.C., Hoek, G., Harssema, H., Brunekreef, B., 1998. Characterization of particulate air pollution in urban and non-urban areas in the Netherlands. Atmospheric Environment. 32. (21) 3717—3729.
Weinan C. , Zhibao D., Zhenshan L., Zuotao Y. 1996. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. Journal of Arid Environment. 34. 391–402.
Wang J. , Miller, D.R., Sammis, T.W., Hiscox, A.L., Yang, W.L., Holmén, B.A. 2010. Local dust emission factors for agricultural tilling operations. Soil Sci. 175. (4.) 194–200.
WHO, 2013. Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and central Asia, WORLD HEALTH ORGANIZATION http://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effectsof- particulate-matter-final-Eng.pdf
Zender C.S. , Miller R.L., Tegen I., 2004. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. EOS. 85. (48) 509-512.
Zobeck, T.M., Gill, T.E., Popham, T.W., 1999. A two-parameter Weibull function to describe airborne dust particle size distributions. Earth Surf. Process. Landforms. 24. 943–955.